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The no-wait job shop with regular objective:
a method based on optimal job insertion

Reinhard Bürgy · Heinz Gröflin

Abstract The no-wait job shop problem (NWJS-R) considered here is a version of
the job shop scheduling problem where, for any two operations of a job, a fixed time
lag between their starting times is prescribed. Also, sequence-dependent set-up times
between consecutive operations on a machine can be present. The problem consists
in finding a schedule that minimizes a general regular objective function.

We study the so-called optimal job insertion problem in the NWJS-R and prove
that this problem is solvable in polynomial time by a very efficient algorithm, gener-
alizing a result we obtained in the case of a makespan objective.

We then propose a large neighborhood local search method for the NWJS-R based
on the optimal job insertion algorithm and present extensive numerical results that
compare favorably with current benchmarks when available.

Keywords no-wait job shop · general regular objective · fixed time lags · optimal
job insertion · local search

1 Introduction

The landscape of job shop scheduling is characterized by a broad variety of process
features—set-up times, blocking or no-wait constraints, transportation operations, to
name a few—but also by a multitude of objectives pursued in finding “good” sched-
ules.

An important objective is to minimize makespan and a large part of the job shop
scheduling literature addresses this goal. On the other hand, from an operations man-
agement perspective on scheduling, other objectives are of equal interest, e.g. in the
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presence of release and due dates, schedules might be sought that minimize average
flow time or some measure of lateness or tardiness.

The class of so-called regular objectives comprises all functions that are mono-
tone non-decreasing in the completion times. This class includes all the objectives
mentioned previously as well as many others. It is therefore of high interest, from
both a theoretical and an application point of view, to develop solution methods for
job shop scheduling problems with general regular objective.

Work along this line is very sparse in the literature, as noted by Mati et al (2011).
They propose a general approach for the classical job shop scheduling problem with
regular objective. For more complex job shop scheduling problems, e.g. with block-
ing or no-wait constraints, solution methods for general regular objective do not seem
to be available in the literature.

In the present work, we propose a method for the no-wait job shop scheduling
problem with general regular objective (NWJS-R). The method is of the local search
type with a large neighborhood and is based on the study of the optimal job insertion
problem in the NWJS-R (OJI-NWJS-R). We establish that the OJI-NWJS-R is solv-
able in polynomial time by an efficient algorithm and apply repeatedly this algorithm
to determine optimal neighbors in our local search.

It should be noted that we used a similar approach in previous work on the NWJS
with makespan objective (Bürgy and Gröflin, 2013). However, there are some subtle
differences between the OJI-NWJS with makespan objective and the OJI-NWJS-R.
Some structural properties holding in the first case and that were critical in the de-
velopment of the efficient algorithm are lost in the second, more general case. Fortu-
nately and at first unexpectedly for us, the OJI-NWJS-R is still solvable in polynomial
time, and in fact with a similar computational effort. Moreover, the proposed algo-
rithm works for any regular function and requires only function evaluation calls.

The paper is organized as follows. The next section describes the NWJS-R and
formulates it in both a classical disjunctive graph and a compact disjunctive graph.
Section 3 is devoted to the OJI-NWJS-R. After its formulation in an insertion graph,
its so-called feasible insertions are characterized as the stable sets (of prescribed car-
dinality) of a conflict graph, and structural properties of this conflict graph and the
family of feasible insertions of bounded objective value are established. An efficient
algorithm for the OJI-NWJS-R is then developed. Section 4 proposes a local search
method for the NWJS-R based on the OJI-NWJS-R algorithm and presents exten-
sive numerical results. The Appendix provides a detailed implementation of the OJI-
NWJS-R algorithm with a complexity analysis and a mixed integer programming
formulation of the NWJS-R problem.

In the exposition of the paper, we have tried to keep the paper self-contained: for
this reason, several basic results from (Bürgy and Gröflin, 2013) are recalled and at
times detailed for readability and insight.

We conclude this introduction with some notation and terminology. All graphs
will be directed and the following standard notation will be used. In the graph G =
(V,E), an arc e ∈ E has a tail (node) t(e) and a head h(e). For any disjoint sets
V ′, V ′′ ⊆ V , δ (V ′,V ′′) = {e ∈ E : t(e) ∈ V ′ and h(e) ∈ V ′′}, and for any V ′ ⊆ V ,
δ (V ′) = δ (V ′,V −V ′)∪δ (V −V ′,V ′). If an arc length vector c ∈RE is given, G will
be denoted by the triplet G = (V,E,c). Sometimes a triplet alone is used to identify a
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graph, usually a subgraph of a given graph. In G = (V,E,c), a cycle is called positive
if its length is positive. Finally, some concepts such as clique, stable set, and com-
parability graph are used here with directed graphs, with the understanding that they
apply to the corresponding undirected graphs obtained by ignoring arc orientation.

2 The no-wait job shop

2.1 Problem description

Typically in a job shop scheduling problem, a set I of operations and a set M of
machines are given. Each operation i∈ I needs a specific machine, say mi ∈M, for its
execution (without interruption) of duration pi > 0. The set of operations is structured
into jobs: a set J ⊆ 2I of jobs such that J forms a partition of I is given, denoting
by 2I the power set of I. For each job J ∈J , its set of operations {i : i∈ J} is usually
ordered in a sequence {J1,J2, . . . ,J|J|}, Jr denoting the r-th operation of job J. Two
operations i, j of job J are consecutive if i = Jr and j = Jr+1 for some r,1≤ r < |J|.
The problem consists in finding starting times for all operations i ∈ I so that each
machine is occupied by at most one operation at a time and some objective function,
e.g. the makespan, is minimized.

The no-wait job shop problem with regular objective (NWJS-R) considered here
is the following version of a job shop scheduling problem. No-wait constraints are
present in the following form. For each job J ∈J and any two operations i and
j ∈ J, a fixed time lag γi j of arbitrary sign is imposed between the starting times of i
and j. We may assume that the order of operations J1,J2, . . . ,J|J| of job J is such that
γJr ,Jr+1≥ 0, 1 ≤ r < |J| and that time lags are given only between consecutive oper-
ations, since for any i = Js and j = Jt with s < t, γi j = ∑s≤r<tγJr ,Jr+1 and γ ji =−γi j.
Note that fixed time lags slightly generalize the no-wait constraints present in the
“classical” no-wait job shop where γi j = pi for a pair i, j of consecutive operations of
a job. They allow to model some scheduling problems typically occurring in the pro-
cess industry. This generalization is sometimes also called job shop with fixed time
lags (Condotta (2011), p. 16), job shop with exact time lags (Condotta and Shakhle-
vich (2012)), job shop with exact relative timing (Brucker and Knust (2011), p. 254),
and job shop with exact delays (Leung et al (2007)).

Two additional features, set-up times and objective function, are best described
by first adding to I two dummy operations σ and τ , both of duration zero, where σ

must precede all operations and τ be preceded by all operations, extending hereby I
to I+ = I∪{σ ,τ}.

If i and j are two operations on a same machine and j follows i, then a set-up of
duration si j might occur between completion of i and start of j. Also, for each i ∈ I,
an initial set-up of duration sσ i between start/completion of σ and start of i, i.e. a
release time, and similarly, a final set-up of duration siτ between completion of i and
start of τ , i.e. a so-called tail, might be prescribed.

Let α = (αi ∈ R : i ∈ I+) denote the vector of the starting times αi, i ∈ I+. The
objective function considered here is a function f that satisfies

α ≤ α
′ ⇒ f (α)≤ f (α ′).
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Fig. 1 An example with four jobs and five machines.

Such an objective function is called regular. Note that in the literature, e.g. in (Pinedo,
2012), a regular function is often defined in terms of completion times βi instead of
starting times αi, i ∈ I+. Of course, since βi = αi + pi, both definitions are valid.

The NWJS-R consists in finding starting times αi for all operations i ∈ I+ so that
each machine is occupied by at most one operation at a time and the objective value
f (α) is minimized.

An example with four jobs J,K,L,N and five machines m1, . . . ,m5 is illustrated
in a Gantt chart in Figure 1, upper part. For simplicity, no set-ups are present. The
numerical data can be read in the chart, e.g. for job J, its first operation is executed
on m5 and has a duration of 2, and the time lag between its first and second operation
is 1. We will use this example in the sequel.

2.2 A disjunctive graph formulation

As in the classical job shop problem, a disjunctive graph G = (I+,A,E,E ,d) for
the NWJS-R is readily obtained as follows. Each operation i ∈ I+ = I ∪ {σ ,τ} is
represented by a node. Identifying a node with the operation it represents, we denote
the node set by I+ = I∪{σ ,τ}.

The set A of conjunctive arcs consists of the following arcs: (i) for each opera-
tion i ∈ I, an initial set-up arc (σ , i) and a final set-up arc (i,τ) of respective length
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dσ i = sσ i and diτ = pi + siτ ; (ii) for each job J and each ordered pair of consecutive
operations i, j ∈ J, a pair of arcs (i, j) and ( j, i) with respective length di j = γi j and
d ji = γ ji =−di j.

The set E of disjunctive arcs consists of all arcs (i, j) and ( j, i) between operations
i and j on a same machine and of different jobs. Formally, define for all m ∈ M,
Im = {i ∈ I : mi = m} and Em = {(i, j) : i, j ∈ Im such that i ∈ J, j ∈ J′ ⇒ J 6= J′}.
Then E = ∪m∈MEm. The lengths are di j = pi + si j for all (i, j) ∈ E.

For any machine m ∈M and any pair of operations i, j ∈ Im, arcs (i, j) and ( j, i)
form an (unordered) pair of disjunctive arcs. The family E is the collection of all
such pairs. A general element of E , i.e. a pair of disjunctive arcs, will be denoted by
{e,e}.

Definition 1 Any subset of disjunctive arcs S ⊆ E is called a selection. A selection
S is positive acyclic if the subgraph (I+,A∪ S,d) contains no positive cycle, and is
positive cyclic otherwise. A selection S is complete if S∩{e,e} 6= /0 for all {e,e} ∈ E .

Given a complete selection S⊆ E, the space of feasible starting times is

Ω(S) = {α ∈ RI+ : ασ = 0; αh(e)−αt(e) ≥ de for all e ∈ A∪S}.

Clearly, Ω(S) 6= /0 if and only if S is positive acyclic. Consequently, a selection S is
called feasible if S is complete and positive acyclic.

In Figure 1, lower part, the feasible selection (set of dashed arcs) corresponding
to the schedule of the example above is depicted.

Given a feasible selection S ⊆ E, earliest starting times α(S) = (αi(S) : i ∈ I+)
can be calculated by determining for each i ∈ I+ the length of a longest path from σ

to i in (I+,A∪S,d). Moreover, since the objective function f is regular,

f (α(S)) = min{ f (α) : α ∈Ω(S)}.

The NWJS-R with regular objective f can therefore be formulated as the fol-
lowing problem in the disjunctive graph G: “Among all feasible selections, find a
selection S minimizing f (α(S)).”

A remark on set-up times is in order. They should satisfy the so-called weak
triangle inequality (cf. (Brucker and Knust, 2011), p. 11) for the disjunctive graph
formulation to be valid. Otherwise, arcs between non-consecutive operations on a
machine may become active when computing longest paths in (V,A∪S,d), yielding
wrong starting times since set-ups take place only between consecutive operations on
a machine.

In a no-wait job shop, the starting time of any operation of a job determines the
starting times of all other operations of that job, so that starting times defined on
the jobs are sufficient. Accordingly, a more compact disjunctive graph formulation is
readily obtained, as used by Schuster (2006). For our purpose however, a different
compact disjunctive graph formulation derived in (Bürgy and Gröflin, 2013) will be
needed.
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2.3 A compact disjunctive graph formulation

Given any two distinct jobs J, K ∈J and any selection S ⊆ E in the disjunctive
graph G = (I+,A,E,E ,d), define

SJK = S∩δ (J,K), SKJ = S∩δ (K,J)
S[JK] = SJK ∪SKJ

(1)

and distances
cS

JK = max{γJ1,i +di j + γ j,K1 : (i, j) ∈ SJK}, (2)

convening cS
JK =−∞ if SJK = /0 and γii = 0 for all i ∈ I.

Observe that
⋃

J,K∈J S[JK] is a partition of S. Also, a distance cS
JK (> −∞) is the

length of a longest path in the subgraph (I+,A∪SJK ,d) from the first operation J1 of
J to the first operation K1 of K, and similarly cS

KJ (> −∞) is the length of a longest
path in (I+,A∪SKJ ,d) from K1 to J1.

The distances from σ to J and from J to τ for all J ∈J are defined as:

cσJ = cS
σJ = max{dσ i + γi,J1 : i ∈ J}, (3)

cJτ = cS
Jτ = max{γJ1,i +diτ : i ∈ J}. (4)

A compact disjunctive graph formulation of the NWJS-R is now derived as fol-
lows. For each (unordered) pair of distinct jobs J,K ∈ J , let Sp

[JK]
⊆ δ (J,K) ∪

δ (K,J), p = 1, . . . ,qJK , be all selections that are positive acyclic and complete on
δ (J,K)∪ δ (K,J), i.e. Sp

[JK]
∩ {e,e} 6= /0 for all {e,e} ⊆ δ (J,K)∪ δ (K,J). In other

words, selections Sp
[JK]

, p = 1, . . . ,qJK , represent all feasible ways of positioning J
and K with respect to each other.

The number qJK of these selections is not larger than 1+∑m∈MrJm · rKm , if for all
jobs N ∈J , rNm denotes the number of operations of N on machine m. In particular,
in the case of a classical NWJS where rJm ≤ 1 for all J ∈J and m ∈ M, qJK ≤
|M|+1.

We may assume that the Sp
[JK]

’s are indexed with p = 1, . . . ,qJK in such a way that

S1
JK = S1

[JK], S1
KJ = /0,

Sp
JK ⊃ Sq

JK and Sp
KJ ⊂ Sq

KJ for 1≤ p < q≤ qJK , (5)
SqJK

JK = /0, SqJK
KJ = SqJK

[JK]
.

i.e. S1
[JK] places job J “fully before” K, and, with increasing p, K moves ahead of an

operation of J on some machine, until with selection SqJK
[JK]

, K is fully before J.
Figure 2 illustrates these selections for the two jobs J and K in the example. The

four positionings of J and K are depicted in a Gantt chart (left), and the corresponding
selections Sp

[J,K]
, p = 1,2,3,4, are shown in the center (set of dashed arcs).

Proposition 1 Let cp
JK and cp

KJ be the lengths cS
JK and cS

KJ defined by (2) for S= Sp
[JK]

,
p = 1, . . . ,qJK . The following holds.
i) c1

JK > c2
JK > .. . > cqJK

JK and c1
KJ < c2

KJ < .. . < cqJK
KJ ,
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Fig. 2 Positionings of jobs J and K (left) and the corresponding selections (set of dashed arcs) in graph G
(center) and graph F (right).

ii) cp
JK + cp

KJ ≤ 0 for p = 1, . . . ,qJK ,
iii) cp

JK + cq
KJ ≤ 0 for 1≤ q < p≤ qJK ,

iv) cp
JK + cq

KJ > 0 for 1≤ p < q≤ qJK .

Proof See (Bürgy and Gröflin, 2013). ut

The compact disjunctive graph F = (J +,B,U,P,c) is now constructed. The
node set J + = J ∪{σ ,τ} consists of all nodes representing a job or a fictive op-
eration. The conjunctive arc set B comprises the arcs (σ ,J) and (J,τ) with lengths
cσJ and cJτ defined by (3) and (4) for all J ∈J . The set U of disjunctive arcs com-
prises the following arcs. Between any distinct nodes J,K of J , two arcs (J,K)p and
(K,J)p with length cp

JK and cp
KJ are introduced for each p = 1, . . . ,qJK .

Considering jobs J and K in the example, two arcs (J,K)p and (K,J)p are intro-
duced for p = 1,2,3,4. Each pair of arcs is separately displayed in Figure 2, right.
The disjunctive graph F is illustrated in Figure 3.

For any distinct jobs J,K ∈J and p ∈ {1, . . . ,qJK}, denote by [J,K]p the (un-
ordered) pair of arcs {(J,K)p, (K,J)p} ∈U×U . The pair [J,K]p represents selection
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Fig. 3 The disjunctive graph F of the example.

Sp
[JK]

. Let P be the set of all such pairs, i.e.

P = {[J,K]p : J,K ∈J , J 6= K and 1≤ p≤ qJK},
and for any distinct J and K ∈J , let

DJK = {[J,K]p : 1≤ p≤ qJK}.
The family P (of sets of arc pairs) is the family {DJK : J,K ∈J , J 6= K}.
Definition 2 A selection in F is any set T ⊆ P of arc pairs and UT ⊆U denotes the
set of all arcs used by T . A selection T is complete if T ∩DJK 6= /0 for all distinct
J,K ∈J , and is positive acyclic if the graph (J +,B∪UT ,c) contains no positive
cycle.

Given a complete selection T ⊆ P, the space of feasible starting times is

Ω(T ) = {α ∈ RJ +
: ασ = 0; αh(u)−αt(u) ≥ cu for all u ∈ B∪UT}.

Clearly, Ω(T ) 6= /0 if and only if T is positive acyclic. Consequently, a selection T is
called feasible if T is complete and positive acyclic.

Note that, by definition, a complete selection T contains at least one pair [J,K]p
for any distinct jobs J and K. If additionally T is positive acyclic, i.e. if T is feasible,
then by Proposition 1, T contains exactly one pair [J,K]p for distinct J and K.

Since (J +,B∪UT ,c) contains no positive cycle, earliest starting times α(T ) =
(αJ(T ) : J ∈J +) can be calculated by determining for each J ∈J + the length of
a longest path from σ to J. Moreover, since f is regular,

f (α(T )) = min{ f (α) : α ∈Ω(T )}.
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The NWJS-R with regular objective f can then be formulated as the following
problem in the compact disjunctive graph F : “Among all feasible selections, find a
selection T minimizing f (α(T )).”

3 Optimal job insertion

3.1 The disjunctive insertion graph

Inserting optimally a given job can be thought of as the problem: given a feasible
selection for all other jobs, insert the job in such a way that the resulting schedule is
feasible and its objective value is minimal.

As in (Bürgy and Gröflin, 2013), we formulate the optimal job insertion problem
in the NWJS with regular objective (OJI-NWJS-R) in the framework of our compact
formulation. The job to be inserted will be denoted J, and for brevity, J − and qK
will designate J − J and qJK .

In the disjunctive graph F , a selection R for all other jobs K ∈J − that is positive
acyclic and “complete” is given, i.e. for any distinct K,L ∈J −, [K,L]p ⊆ R for
some p ∈ {1, . . . ,qKL}. Let UJ = U ∩ δ (J) and PJ be the family of sets DJK for
all K ∈J −. One can define the insertion graph for J as the disjunctive graph FJ =
(J +,B∪UR,UJ ,PJ ,c), where the restriction of c to B∪UR∪UJ is denoted again by
c. A selection T in FJ is called an insertion of job J. Note that T is a (positive acyclic,
complete, feasible) insertion if and only if T ∪ R is a (positive acyclic, complete,
feasible) selection in F = (J +,B,U,P,c).

The OJI-NWJS-R can then be stated as follows: “Among all feasible insertions,
find an insertion T minimizing f (α(T )), where α(T ) = (αK(T ) : K ∈J +) and
αK(T ) is the length of a longest path from σ to K, K ∈J +, in the subgraph (J +,B∪
UR∪UT ,c).”

3.2 Insertions and stable sets in the conflict graph

In the graph (J +,B∪UR,c), which contains no positive cycle, let lKL be the length
of a longest K-L path for any nodes K, L∈J +, with the convention lKL = 0 if K = L
and lKL =−∞ if K 6= L and there is no K-L path. Obviously,

lKL + lLK ≤ 0 and lKL + lLN ≤ lKN for all K,L,N ∈J +. (6)

Also, lσJ = cσJ and lJτ = cJτ where cσJ and cJτ are defined by (3) and (4).

Definition 3 The conflict graph is the graph H = (W,Y ) with node set W and arc set
Y defined by W = ∪K∈J −WK where WK = {wp

K : p = 1, . . . ,qK}, K ∈J −, and for
any wp

K , wq
L ∈W :

(wp
K ,w

q
L) ∈ Y ⇔ cp

JK + cq
LJ + lKL > 0 (7)

Observe that if K = L, (7) is equivalent to:

(wp
K ,w

q
K) ∈ Y ⇔ p < q. (8)
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Fig. 4 In the example, (left) the conflict graph H and (right) the Hasse diagram of lattice L .

Indeed, by Proposition 1, cp
JK + cq

KJ > 0 if and only if p < q. Also, lKK = 0 so that in
(7) cp

JK +cq
LJ + lKL > 0 for K = L is equivalent to p< q. Therefore each WK , K ∈J −,

is (the node set of) a clique in H.
Figure 4, left, illustrates the conflict graph H of the example.
Conflict graphs allow to characterize feasible insertions as the following result

holds.

Theorem 1 There is a one-to-one correspondence between the feasible insertions
and the stable sets of size |J −| in H.

Proof Let T be a feasible insertion. Since T is complete and positive acyclic, given
any K ∈ J −, [J,K]p ⊆ T for exactly one p ∈ {1, . . . ,qK}, say pK . Hence to T
corresponds the node set T ′ = {wpK

K : K ∈J −} ⊆ W of size |J −| in H. T ′ is
stable in H. Indeed, suppose the contrary: for some K 6= L, (wpK

K ,wpL
L ) ∈ Y , i.e.

cpK
JK +cpL

LJ + lKL > 0. Then the positive cyclic insertion {[J,K]pK , [L,J]pL} is contained
in T , contradicting T being positive acyclic.

Conversely, let T ′ be a stable set of size |J −| in H. T ′ picks up exactly one
node, say wpK

K , from each clique WK , K ∈J −, hence T ′ = {wpK
K : K ∈J −}. The

corresponding insertion T = ∪K∈J − [J,K]pK is obviously complete. T is also posi-
tive acyclic, otherwise there is a positive cycle in (J +,B∪UR ∪UT ,c) which must
go through J, entering J, through, say, arc (L,J)pL and leaving J through (J,K)pK ,
implying cpK

JK + cpL
LJ + lKL > 0, hence (wpK

K ,wpL
L ) ∈ Y , a contradiction to the stability

of T ′. ut

The conflict graph H has nice properties. First, H is a comparability graph.

Theorem 2 H = (W,Y ) is acyclic and transitively oriented.

Proof a) H is transitively oriented, i.e. for any distinct nodes w, w′, w′′ ∈W ,

(w,w′) ∈ Y and (w′,w′′) ∈ Y ⇒ (w,w′′) ∈ Y.

Indeed, assume (w,w′) = (wp
K ,w

q
L) ∈ Y and (w′,w′′) = (wq

L,w
r
N) ∈ Y . Then cp

JK +
cq

LJ + lKL > 0 and cq
JL+cr

NJ + lLN > 0. Adding both left and right hand sides of the two
inequalities and using cq

JL + cq
LJ ≤ 0 and lKL + lLN ≤ lKN yields cp

JK + cr
NJ + lKN > 0,

hence (wp
K ,w

r
N) ∈ Y .
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b) H is acyclic. Since H is transitively oriented, it suffices to show that there is
no w,w′ ∈W with both (w,w′) and (w′,w) ∈ Y . Assume the contrary and let w = wp

K
and w′ = wq

L. Then cp
JK + cq

LJ + lKL > 0 and cq
JL + cp

KJ + lLK > 0. Since cp
JK + cp

KJ ≤ 0
and cq

JL + cq
LJ ≤ 0, lKL + lLK > 0 follows, a contradiction to (6). ut

Second, the stable sets of size |J −| in H have the following property.

Proposition 2 The stable sets of size |J −| in H form a lattice L with order�, meet
∨ and join ∧ defined as follows. For any two stable sets T = {wpK

K : K ∈J −} and

T ′ = {wp′K
K : K ∈J −},

T � T ′ ⇔ pK ≤ p′K for all K ∈J −

T ∨T ′ = {wmax{pK ,p′K}
K : K ∈J −}

T ∧T ′ = {wmin{pK ,p′K}
K : K ∈J −}

Proof Clearly, � is a partial order. T ∨T ′ is stable, otherwise there exist w and w′ ∈
T ∨T ′ with (w,w′) ∈ Y or (w′,w) ∈ Y . We may assume w ∈ T −T ′ and w′ ∈ T ′−T ,

i.e. w = wpK
K for some K and pK > p′K and w′ = wp′L

L for some L 6= K and p′L > pL. If

(w,w′)= (wpK
K ,wp′L

L )∈Y , then (wp′K
K ,wp′L

L )∈Y by (wp′K
K ,wpK

K )∈Y , and transitivity, and

if (w′,w)= (wp′L
L ,wpK

K )∈Y , then (wpL
L ,wpK

K )∈Y , contradicting the stability of T ′ or T .
Similarly, one can show that T ∧T ′ is stable. Finally, |T ∨T ′|= |T ∧T ′|= |T |= |T ′|.

ut
We remark that this result also follows from the fact that the family of maximum

size stable sets in a comparability graph forms a lattice (see for instance (Schrijver,
2003), p. 235).

Figure 4, right, shows the Hasse diagram of lattice L in the example.

3.3 Insertions with bounded objective value

Let T = {wpK
K : K ∈J −} be a stable set of size |J −| in the conflict graph H =

(W,Y ), i.e. T corresponds to a feasible insertion. Its objective value f (T ) = f (α(T ))
can be calculated in the graph (J +,B∪UR∪UT ,c) as follows:

1. Determine the length g(T ) of a longest path from σ to J:

g(T ) = max{lσJ ; lσK + cpK
KJ : K ∈J −} (9)

2. For each K ∈J −∪τ , determine the length hK(T ) of a longest path from J to K:

hK(T ) = max{cpL
JL + lLK : L ∈J −∪ τ} (10)

3. For each K ∈J ∪ τ , determine the length αK(T ) of a longest path from σ to K,
and therefore the earliest starting time of K by

αK(T ) = max{lσK ;g(T )+hK(T )} (11)

with the convention hJ(T ) = 0.
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4. Compute f (T ) = f (α(T )).

Next, we examine structural properties of the family of feasible insertions of
bounded objective value, motivated by results we obtained earlier on the job insertion
problem in the NWJS with makespan objective. For any scalar ρ , denote by

L ρ = {T ∈L : f (α(T ))< ρ}.

Definition 4 The conflict graph at ρ is the graph Hρ = (W ρ ,Y ρ) with the node set
W ρ and the arc set Y ρ defined by:

for all p = 1, . . . ,qK and K ∈J −:

wp
K ∈W ρ ⇔

{
cσJ + cp

JK + lKτ < ρ and
lσK + cp

KJ + cJτ < ρ
(12)

for all pairs of distinct nodes wp
K , wq

L ∈W ρ :

(wp
K ,w

q
L) ∈ Y ρ ⇔

{
cp

JK + cq
LJ + lKL > 0 or

cp
JK + cq

LJ + lKτ + lσL ≥ ρ
(13)

Note that for sufficiently large ρ , Hρ is the conflict graph H of the previous section.
In the special case where the objective function is the makespan, i.e. f (T ) =

ατ(T ), the family L ρ has a nice characterization. Indeed, there is a one-to-one cor-
respondence between the feasible insertions in L ρ and the stable sets of size |J −| in
the conflict graph Hρ , and the conflict graph Hρ is acyclic and transitively oriented.
Then, L ρ is a lattice. We refer for the details to Bürgy and Gröflin (2013).

This characterization played a key role in the optimal job insertion algorithm
developped there. Unfortunately, for a general regular function f , the family L ρ =
{T ∈L : f (T )) < ρ} cannot be characterized similarly by stable sets in a conflict
graph Hρ . Indeed, L ρ might not be a lattice as shown in the following example,
which is illustrated in Figure 5.

Consider three jobs J, K, L and two machines m1, m2. J has two operations i on m1
and j on m2 with γi j = 0, i.e. J occupies simultaneously m1 and m2. K has one opera-
tion k on m1 and L has one operation l on m2. All operations i, j,k, l have duration 1,
job J has due date 3 and jobs K and L have due date 1. The objective function f is the
number of tardy jobs. In the insertion problem for J, the conflict graph H = (W,Y )
has nodes w1

K , w2
K , w1

L, w2
L and arcs (w1

K ,w
2
K), (w

1
L,w

2
L). As illustrated in Figure 5,

there exists four feasible insertions. Consider T2 = {w1
K ,w

2
L}, T3 = {w2

K ,w
1
L}, and

T2 ∧ T3 = T4 = {w1
K ,w

1
L}, corresponding to inserting J respectively before K and

after L, before L and after K, and before K and L. Then f (T2) = f (T3) = 1 and
f (T2∧T3) = 2, hence for ρ = 2, T2 and T3 ∈L ρ , but T2∧T3 /∈L ρ .

However, the following result holds.

Theorem 3 L ρ = {T ∈L : f (T )< ρ} is a ∨-semi-lattice.

Proof Let T = {wpK
K : K ∈J −} and T ′ = {wp′K

K : K ∈J −} be any members of L .
First, we show that the function g defined in (9) satisfies

g(T ∨T ′)≤max{g(T ),g(T ′)}. (14)
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Fig. 5 An example showing that L ρ might not be a lattice.

g(T ∨ T ′) = max{lσJ ; lσK + cp∨K
KJ : K ∈J −} where p∨K = max{pK , p′K}. If g(T ∨

T ′) = lσJ , clearly both g(T ∨T ′)≤ g(T ) and g(T ∨T ′)≤ g(T ′). Assume g(T ∨T ′) =

lσK∗ + c
p∨K∗
K∗J for some K∗ ∈J −. If p∨K∗ = pK∗ , g(T ∨T ′) = lσK∗ + cpK∗

K∗J ≤ g(T ), and
if p∨K∗ = p′K∗ , g(T ∨T ′)≤ g(T ′).

Next, for any K ∈J ∪ τ , the function hK defined in (10) satisfies

hK(T )≤ hK(T ′) if T ′ � T (15)

Indeed, T ′� T implies p′L≤ pL for all L∈J −. Then, by Proposition 1, cp′L
JL ≥ cpL

JL for

all L ∈J −. Therefore hK(T ) = max{cpL
JL + lLK : L ∈J −} ≤ hK(T ′) = max{cp′L

JL +
lLK : L ∈J −} for any K ∈J −∪ τ .

Then,
f (T ∨T ′)≤max{ f (T ), f (T ′)}.

Indeed, in view of (14), we may assume without loss of generality g(T ∨T ′)≤ g(T )=
max{g(T ),g(T ′)}. Also, by (15) hK(T ∨T ′)≤ hK(T ) holds for all K ∈J ∪τ . Hence,
using (11), αK(T ∨ T ′) = max{lσK ;g(T ∨ T ′) + hK(T ∨ T ′)} ≤ max{lσK ,g(T ) +
hK(T )}= αK(T ) for all K ∈J ∪ τ . Since f is regular, f (α(T ∨T ′))≤ f (α(T )).

Finally, for any ρ ∈ R and any T,T ′ ∈L ρ ,

f (α(T ∨T ′))≤max{ f (α(T )), f (α(T ′))}< ρ

therefore T ∨T ′ ∈L ρ , hence L ρ is a ∨-semi-lattice. ut

3.4 The OJI-NWJS-R algorithm

We propose an efficient method for the OJI-NWJS-R, the OJI-NWJS-R Algorithm.
We describe below its principle and prove then its validity.
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Given any stable set T = {wpK
K : K ∈J −}, in step 1 of the calculation of its

objective value f (T ) detailed above, define

J (T ) = {K ∈J − : lσK + cpK
KJ = g(T )},

Q(T ) = {wpK
K : K ∈J (T )} ⊆ T and (16)

LT = {T ′ ∈L : T ′ � T and T ′∩Q(T ) = /0}.

Proposition 3 If Q(T ) 6= /0, for any T ′ ∈L with T ′ � T :

f (T ′)< f (T )⇒ T ′ ∈LT .

Proof We show equivalently T ′ /∈LT ⇒ f (T )≤ f (T ′). If T ′ /∈LT , T ′∩Q(T ) 6= /0,

and therefore, letting T = {wpK
K : K ∈J −}, T ′ = {wp′K

K : K ∈J −}, p′L = pL for

some L ∈J (T ). Then g(T ) = lσL +cpL
LJ ≤ g(T ′) = max{lσJ ; lσK +cp′K

KJ : K ∈J −}.
Moreover, since T ′ � T , hK(T )≤ hK(T ′) by (15) for all K, hence f (T )≤ f (T ′). ut

Proposition 4 If Q(T ) = /0, f (T ) = min{ f (T ′) : T ′ ∈LT}.

Proof If Q(T ) = /0, J (T ) = /0, hence g(T ) = lσJ ≤ g(T ′) for any T ′ ∈L . Moreover,
if T ′ � T , hK(T )≤ hK(T ′) by (15) for all K, hence f (T )≤ f (T ′). ut

In the OJI-NWJS-R Algorithm, a sequence T0,T1, ...,Ts is generated where:

T0 is the maximal element of L ;
for r = 0,1, ..., s−1, Q(Tr) 6= /0 and Tr+1 is the maximal element of L ;

Q(Ts) = /0 or LTs = /0.

Theorem 4 Tp with f (Tp) = min{ f (Tr) : 0≤ r ≤ s} is an optimal insertion.

Proof Let T ∗ be an optimal insertion and suppose the theorem does not hold, i.e.

f (T ∗)< f (Tr) for all r = 0, ...,s.

Clearly T0 � T1 � ... � Ts and T0 � T ∗. Also, Ts � T ∗. Indeed, assume to the
contrary Ts � T ∗. If Q(Ts) 6= /0, then T ∗ ∈LTs by Proposition 3 for T = Ts and T ′ =
T ∗, contradicting LTs = /0. If Q(Ts) = /0, then T ∗ ∈ LTs and, by Proposition 4 for
T = Ts, f (Ts) = min{ f (T ′) : T ′ ∈LTs}, hence f (Ts)≤ f (T ∗), a contradiction.

Therefore there exists a largest r such that Tr � T ∗, and r < s. Applying Proposi-
tion 3 for T = Tr and T ′ = T ∗ implies T ∗ ∈LTr . But then, since Tr+1 is the maximal
element of LTr , Tr+1 � T ∗ contradicting the choice of r. ut

It remains to be shown, given r, 0≤ r < s, how to find the maximal element Tr+1
of LTr . Assume Tr = {wpK

K : K ∈J −} and denote Q(Tr) by Qr. Note that Qr 6= /0.
Let Hr = (W r,Y r) be the subgraph obtained by deleting in H all nodes wp

K , p >
pK , K ∈J −. For any K ∈ J− and v ∈W r

K =WK ∩W r, denote by p(v) the immediate
predecessor of v in W r

K , with the convention p(v) = /0 if v = w1
K . For any v,w ∈W r,
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define the relations v 7→ w if (p(v),w) ∈ Y r, and v w if there is a sequence of
distinct nodes vl ∈W r, l = 1, ...,q, q≥ 1, such that v1 = v, vq = w and vl 7→ vl+1 for
l = 1, ...,q− 1. If v w, the distance λ (v,w) from v to w is given by the minimum
length q of such a sequence. Define

Ψ
r(Qr) = {w ∈W r : v w for some v ∈ Qr}.

Lemma 1 If W r
K−Ψ r(Qr) 6= /0 for all K ∈J −, then LTr 6= /0 and Tr+1 = {wp′K

K : K ∈
J −}, where p′K = max{p : wp

K ∈W r
K−Ψ r(Qr)}, is the maximal element of LTr , else

LTr = /0.

Proof i) Assume W r
K−Ψ r(Qr) 6= /0 for all K ∈J −, and let Tr+1 = {wp′K

K : K ∈J −},
where p′K = max{p : wp

K ∈W r
K−Ψ r(Qr)}. We show that Tr+1 ∈LTr .

Clearly, Tr+1 � Tr and, since Qr ⊆Ψ r(Qr), Tr+1 ∩Qr = /0. Also, Tr+1 has size
|J −| and in order to assert Tr+1 ∈ LTr , it is sufficient to show that Tr+1 is stable.
Suppose the contrary, i.e. there exists some v,w ∈ Tr+1 with (v,w) ∈ Y r. Since v =
p(u) for some u ∈Ψ r(Qr), u→ w, and since v u for some v ∈ Qr, v w, hence
w ∈Ψ r(Qr), contradicting Tr+1∩Ψ r(Qr) = /0.

ii) We show that

T ′∩Ψ
r(Qr) = /0 for any T ′ ∈LTr . (17)

Suppose to the contrary some T ′ ∈LTr with T ′ ∩Ψ r(Qr) 6= /0. There exists v w
for some v ∈ Qr and w ∈ T ′ ∩ (Ψ r(Qr)−Qr). Choose such v and w with minimal
distance λ (v,w), and let v1,v2, ..,vq, with v1 = v, vq = w, vl→ vl+1 for l = 1, ...,q−1
and q = λ (v,w). Clearly, vl /∈ T ′ for all l < q, in particular vq−1 /∈ T ′. Now, assuming
vq−1 ∈W r

K , the unique node u ∈ T ′∩W r
K must precede vq−1 in W r

K . Indeed, this holds
if q = 2, as vq−1 = v1 = v ∈ Qr and T ′ ∩Qr = /0. If q > 2, vq−2 → vq−1 implies
(p(vq−2),vq−1) ∈ Y r and, by transitivity, (p(vq−2),u) for any successor u of vq−1 in
W r

K . If some successor u were in T , then v u and λ (v,u) < q, contradicting the
choice of v and w. Consequently, since u precedes vq−1 in W r

K and (p(vq−1),w) ∈Y r,
(u,w) ∈ Y r holds by transitivity, a contradiction to the stability of T ′.

iii) By (17) and construction of Tr+1, T ′ � Tr+1 for any T ′ ∈LTr , i.e. Tr+1 is the
maximal element of LTr .

iv) Finally, for any T ′ ∈LTr , T ′∩W r
K 6= /0 and hence by (17), T ′∩(W r

K−Ψ r(Qr)) 6=
/0 for all K ∈J −. Consequently, W r

K−Ψ r(Qr) 6= /0 for all K ∈J − is not only a suf-
ficient but also necessary condition for LTr to be non-empty. ut

The algorithm can be summarized as follows.

The OJI-NWJS-R algorithm
Initialization: f ∗ := ∞; T := {wqK

K : K ∈J −}; optimal := f alse;
while optimal = f alse do

Determine αK(T ) for all K ∈J ∪ τ and QT ;
Determine f (T ); if f (T )< f ∗ then f ∗ := f (T ) and T ∗ := T ; end (if)
if QT = /0 then optimal := true; return;
else compute Ψ(QT ) in H = (W,Y ); end (if)
if WK−Ψ(QT ) = /0 for some K ∈J − then optimal := true; return;
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else pK := max{p : wp
K ∈WK−Ψ(QT )} for all K ∈J −;

T := {wpK
K : K ∈J −};

Delete in H for all K ∈J − nodes wp
K with p > pK ;

end (if)
end (while)
T ∗ is an optimal insertion.

The number of iterations of the while loop is bounded by ∑K∈J −qK . Indeed, if
T0,T1, . . . ,Ts is the sequence of sets T generated by the algorithm, T0 � T1 � . . .� Ts
so that s≤∑K∈J −qK . The complexity of the algorithm also depends on the effort for
i) determining αK(T ) for all K ∈J ∪σ , QT and f (T ), and ii) computing Ψ(QT ).
We give a detailed implementation in the Appendix that achieves the following com-
putational complexity, where n denotes the number of jobs and η is the effort for
evaluating the objective value f (T ).

Theorem 5 The OJI-NWJS-R algorithm runs in time

O(max{n3,max{n,η} ·∑KqK}).
Proof See Appendix. ut
To illustrate this result, we remark that most often (for total flow time, total tardiness,
number of tardy jobs, etc.) η is of the order O(n). Also, a job has usually at most
one operation on a given machine and consequently ∑K∈J − qK ≤ (n−1)(m+1), m
being the number of machines. The OJI-NWJS-R algorithm then runs in time O(n2 ·
max{m,n}).

Considering the job insertion problem of J in the example, a run of the OJI-
NWJS-R algorithm is depicted in Figure 6. The topmost part illustrates the situation
after the initialization. Set T = T0 is depicted in conflict graph H (left) by the grey
nodes. T is the maximal member (grey node) of lattice L (middle). Note that for
each member of the lattice, its elements {wpK

K ,wpL
L ,wpN

N } are simply described by
(pK , pL, pN). The schedule obtained with the earliest starting times α(T ) is shown in
a Gantt chart (right). Set QT consists of the nodes that are surrounded by a dashed
box in H. For each iteration r = 1, . . . ,4 of the while-loop the obtained set T = Tr is
illustrated in graph Hr−1 (left), lattice LTr−1 (middle), and the corresponding schedule
is on the right. Nodes that are not anymore part of the current conflict graph or lattice
are depicted in light grey. The algorithm stops after four iterations as QT = /0.

In Table 1, the objective value f (Tr) of each set Tr,r = 0, . . . ,4, is presented for
different regular objectives f . For the objectives involving tardiness, we set the due
dates of jobs (J,K,L,N) to (5,8,8,5). Optimal insertions are T0 for objective g), T1
for a), T2 for b), c), d), e), and T4 for f).

4 An optimal job insertion-based method for the NWJS-R

4.1 A simple local search

As in (Bürgy and Gröflin, 2013), we develop a heuristic for the NWJS-R that is based
on the OJI-NWJS-R algorithm. It can be described as follows.
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Fig. 6 A run of the OJI-NWJS-R algorithm in the example.
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objective function T0 T1 T2 T3 T4

a) makespan 10 9 10 11 10
b) total flow time 29 29 28 31 30
c) total squared flow time 229 227 214 273 242
d) maximum tardiness 5 4 2 3 2
e) total tardiness 5 5 4 6 4
f) total squared tardiness 25 17 8 14 6
g) number of tardy jobs 1 2 2 3 3

Table 1 Objective values of the insertions generated in the example run (bold: optimal values).

A feasible initial selection is constructed by successively inserting optimally a
job. The initial selection is then improved by local search. We consider two neighbor-
hoods. In neighborhood N1, a neighbor is generated for each job by extracting and
reinserting optimally this job. Neighborhood N1 has size |J|, which is quite small.
Therefore, we examine a larger neighborhood N2, where for any pair of ordered jobs,
a neighbor is generated by extracting these two jobs and reinserting them succes-
sively. N2 has size |J|2.

Based on N1 and N2, two repeated simple descent local search methods are con-
sidered. In the first version, named OJIRLS1, we use neighborhood N1 and select
the first improvement, i.e. if a neighbor yields a lower objective value, the current
selection is reset to this neighbor. In the second version, named OJIRLS2, we use
neighborhood N1 until a local optimal selection is found. Then, we continue with
neighborhood N2. If a neighbor in N2 yields a lower objective value, the current se-
lection is reset to this neighbor and OJIRLS2 continues again with neighborhood N1.

The current search path is stopped if a local optimal solution is found, i.e. no
better neighbor is found in N1 for OJIRLS1 and in N2 for OJIRLS2. In both versions
OJIRLS1 and OJIRLS2, the local search is repeated from various initial selections
generated by random job insertion orders until a given run time limit is reached.

4.2 Computational experiments

We implemented OJIRLS1 and OJIRLS2 in Java and run them on a PC with 3.4 GHz
processor and 12 GB memory. Extensive tests were performed to evaluate the two
methods. We used the well-known benchmark instances la11-15/26-35 proposed by
Lawrence (1984), swv06-20 by Storer et al (1992), and yn1-4 by Yamada and Nakano
(1992). These instances were interpreted as “classical” no-wait job shop instances,
i.e. γi j = pi for each pair i, j of consecutive operations of a job, and all set-up times
and release times are 0. The following seven objective functions were considered:
a) makespan, b) total flow time, c) total squared flow time, d) maximum tardiness,
e) total tardiness, f) total squared tardiness, and g) number of tardy jobs. For the
objectives d) to g), the due date dJ of each job J ∈J is set according to the simple
and popular rule introduced by Eilon and Hodgson (1967) for the classical job shop:
dJ = b f ∗∑i∈J pic, where f is referred to as the due date tightness factor. f is set to
3.0 for instances of size (20× 15) and (20× 20), 3.5 for (20× 5) and (20× 10), 5.0
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Fig. 7 Distributions of the local optimal values (in units of 1000) for instance la31 and total flow time
objective for OJIRLS1 (left) and OJIRLS2 (right).

4.3 Quality of local optimal solutions

We evaluated the quality of the local optimal solutions for both versions OJIRLS1
and OJIRLS2. For this purpose, we run OJIRLS1 and OJIRLS2 for each instance
and objective function with a computation time limit of 7200 seconds. The objective
value of each attained local optimal solution was recorded.

As an illustration, Figure 7 shows for the instance la31 and total flow time ob-
jective the sampling distribution of the local optimal values (in units of 1000) with
OJIRLS1 (left) and OJIRLS2 (right). A box plot highlights the minimum value, lower
quartile, median, upper quartile and maximum value.

We note that both the mean and the variance of the distribution are smaller for
OJIRLS2 than for OJIRLS1. However, the average time needed to generate a local
optimal solution with OJIRLS2 is much higher. Indeed, 1 088 070 local optimal so-
lutions were found within 7200 seconds with OJIRLS1 versus 29 893 solutions with
OJIRLS2. These observations illustrate well the trade-off between solution quality
and required computation time.

We examined the magnitude of this trade-off for each instance with the makespan
and total flow time objective. Denote by f 1 and f 2 the average local optimal value
obtained with OJIRLS1 and OJIRLS2, respectively, and similarly, let t1 and t2 be
the average time needed per local search repetition, i.e. the number of obtained local
optimal solutions divided by the total run time. Figure 8 illustrates the quality-time
trade-off as follows. The horizontal and vertical axes depict the relative difference
of the time, i.e. (t2− t1)/t1, and the relative difference of the solution quality, i.e.
( f 2− f 1)/ f 1. Each combination of instance and objective is represented by a symbol.
For example, the instance la31 with total flow time objective is represented by a grey
square at (35.4,−8.5%). The same symbols are used for instances of the same size
and objective.

We observe that the value of the local optimal solutions is between 5% to 9%
lower with OJIRLS2, but its computation time is by a factor of 5 to 90 larger.

Fig. 7 Sample distributions of the local optimal values (in units of 1000) for instance la31 and total
flow time objective for OJIRLS1 (left) and OJIRLS2 (right). The sample size is 1 088 070 and 29 893 for
OJIRLS1 and OJIRLS2, respectively. The mean (the standard deviation) is 69 511 (2 743) for OJIRLS1
and 63 632 (1 945) for OJIRLS2.

for (30×10), and 7.0 for (50×10), where (n×m) refers to the number n of jobs and
the number m of machines.

4.3 Quality of local optimal solutions

As OJIRLS1 and OJIRLS2 are repetitively restarted with a new initial selection when
a local optimal solution is found, it is of interest to evaluate the quality of the attained
local optimal solutions. For this purpose, we run OJIRLS1 and OJIRLS2 for each
instance and objective function with a computation time limit of 7200 seconds. The
objective value of each attained local optimal solution was recorded.

As an illustration, Figure 7 shows for the instance la31 and total flow time ob-
jective the sampling distribution of the local optimal values (in units of 1000) with
OJIRLS1 (left) and OJIRLS2 (right). A box plot highlights the minimum value, lower
quartile, median, upper quartile and maximum value.

We note that both the mean and the standard deviation of the distributions are
smaller for OJIRLS2 than for OJIRLS1. Indeed, the mean (standard deviation) is
8.5% (29.1%) lower with OJIRLS2 than with OJIRLS1. However, looking at the
number of attained local optimal solutions, the average time needed to generate a
local optimal solution with OJIRLS2 is about 35.4 times higher than with OJIRLS1.
These observations illustrate well the trade-off between solution quality and required
computation time.

We examined the magnitude of this trade-off for each instance with the makespan
and total flow time objective. Denote by f 1 and f 2 the average local optimal value
obtained with OJIRLS1 and OJIRLS2, respectively, and similarly, let t1 and t2 be
the average time needed per local search repetition, i.e. the number of obtained local
optimal solutions divided by the total run time. Figure 8 illustrates the quality-time
trade-off as follows. The horizontal and vertical axes depict the relative difference
of the time, i.e. (t2− t1)/t1, and the relative difference of the solution quality, i.e.
( f 2− f 1)/ f 1. Each combination of instance and objective is represented by a symbol.
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Fig. 8 Quality-time trade-off in all instances with the makespan (a) and total flow time (b) objective.

4.4 Performance of OJIRLS1 and OJIRLS2

It is of interest to evaluate the performance of OJIRLS1 and OJIRLS2 with a given
run time limit. For this purpose, we considered the solution quality of OJIRLS1 and
OJIRLS2 obtained after a short (60 seconds), medium (300 seconds), and high (1800
seconds) run time. For the evaluation of the average behavior (over multiple runs),
we could in principle use the results of the previous experiment by dividing the single
run of 7200 seconds into time slots of 60, 300, and 1800 seconds, respectively, deter-
mining the best solution obtained within each time slot, and presenting the average
results.

As the number of local search repetitions executed within a given time is quite
constant in a run, a better estimation of the average behavior is obtained with the
following variance reduction technique, sometimes called simulation shortcut (see
e.g. McGeoch (1992)). For a given time limit, we determine the average number of
local search repetitions r executable within that time limit, and then simulate a run by
sampling randomly and independently r values from the distribution obtained by the
single run of 7200 seconds. The objective value of a run is then the minimum value
of the r samples.

According to this procedure, we simulated 100 runs for the two methods OJIRLS1
and OJIRLS2, each instance, each objective function and the three run time limits
(60, 300, and 1800 seconds). Detailed results can be found in Tables 7 to 9 in the
Appendix. We now discuss these results.

It is of interest to examine the evolution of attained solution quality during com-
putation. For this purpose, we determined the relative gap of the average results (over

Fig. 8 Quality-time trade-off in all instances with the makespan (a) and total flow time (b) objective.

For example, the example of Figure 7 (instance la31 with total flow time objective)
is represented by a grey square at (35.4,−8.5%). The same symbols are used for
instances of the same size and objective.

We observe that the value of the local optimal solutions is between 5% to 9%
lower with OJIRLS2, but its computation time is by a factor of 5 to 90 larger. Also,
instances with the same size and the same objective have a similar quality-time trade-
off observing that the same symbols are quite close together in Figure 8. Note that
instances of group 50× 10 rather build two clusters, one cluster containing the in-
stances swv11 to swv15 and the other cluster swv16 to swv20 with both objectives.
Interestingly, these two groups of instances were generated in a different way as de-
scribed by Storer et al (1992).

4.4 Performance of OJIRLS1 and OJIRLS2

It is of interest to evaluate the performance of OJIRLS1 and OJIRLS2 with a given
run time limit. For this purpose, we considered the solution quality of OJIRLS1 and
OJIRLS2 obtained after a short (60 seconds), medium (300 seconds), and high (1800
seconds) run time. For the evaluation of the average behavior (over multiple runs),
we could in principle use the results of the previous experiment by dividing the single
run of 7200 seconds into time slots of 60, 300, and 1800 seconds, respectively, deter-
mining the best solution obtained within each time slot, and presenting the average
results.

We observed that the number of local search repetitions executed within a given
time is quite constant in a run. A better estimation of the average behavior is then ob-
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method OJIRLS1 OJIRLS2
objective makesp. tot. f. t. sq. f. t. makesp. tot. f. t. sq. f. t.
run time rep. 60 300 60 300 60 300 rep. 60 300 60 300 60 300

20×5 697 2.4 1.2 2.0 0.9 4.0 1.9 63.4 2.1 0.9 1.0 0.2 3.3 1.2
20×10 737 3.6 1.8 2.3 1.1 5.1 2.3 60.7 3.2 1.4 1.5 0.5 3.4 1.3
30×10 291 2.6 1.3 2.8 1.2 6.0 2.9 9.7 2.7 1.3 2.8 1.3 6.0 2.9
50×10 38 2.0 1.0 2.5 1.3 4.6 2.2 0.8 2.3 1.0 2.7 1.3 5.0 2.2
20×15 639 1.6 0.5 1.7 0.7 3.5 1.6 56.8 0.7 0.1 0.7 0.1 1.3 0.1
20×20 714 3.8 1.9 3.4 1.6 7.3 3.2 53.5 3.5 1.6 3.0 1.2 6.5 2.9

all 2.5 1.2 2.4 1.1 5.0 2.3 2.4 1.0 2.0 0.8 4.3 1.8

Table 2 Relative gaps (in %) of the results after 60 and 300 seconds from the results after 1800 seconds,
and average number of local search repetitions (in units of 1 000) for all instance sizes and objectives a) to
c).

tained with the following variance reduction technique, sometimes called simulation
shortcut (see e.g. McGeoch (1992)). For a given time limit, we determine the average
number of local search repetitions r executable within that time limit, and then sim-
ulate a run by sampling randomly and independently r values from the distribution
obtained by the single run of 7200 seconds. The objective value of a run is then the
minimum value of the r samples.

According to this procedure, we simulated 100 runs for the two methods OJIRLS1
and OJIRLS2, each instance, each objective function and the three run time limits
(60, 300, and 1800 seconds). Detailed results can be found in Tables 6 to 8 in the
Appendix. We now discuss these results.

It is of interest to examine the evolution of attained solution quality during com-
putation. For this purpose, we determined the relative gap of the average results (over
the 100 runs) after 60 and 300 seconds from the average results after 1800 seconds.
Table 2 provides these numbers in an aggregated form (averaged over all instances
of the same size) for objectives a) to c). In addition, columns 2 and 9 give the aver-
age number of local search repetitions obtained in 1800 seconds (in units of 1000,
averaged over all instances of the same size and objectives a) to c)).

The following observations can be made. The values obtained after a short and
medium run time are quite close to those obtained with a high run time. Indeed,
looking at the instances with the makespan and total flow time objective, the results
are improved only by about 1% to 4% after 60 seconds and by about 0% to 2% after
300 seconds in both versions OJIRLS1 and OJIRLS2. These numbers are slightly
higher for the total squared flow time objective.

We then compared the results of OJIRLS1 and OJIRLS2 with each other. For each
instance, objective function and run time limit, we determined the relative difference
of the solution quality, i.e. (s2− s1)/s1, where s1 and s2 is the average value (over the
100 runs) obtained with OJIRLS1 and OJIRLS2, respectively. Table 3 reports these
differences in an aggregated way (averaged over all instances of the same size) for
objectives a) to c). The last line gives the average value over all instances.

We observe that OJIRLS2 provides substantially lower values than OJIRLS1. In-
deed, the average values are up to 5.4% lower with OJIRLS2, and OJIRLS1 never
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objective makespan total flow time tot. squared flow t.
run time 60 300 1800 60 300 1800 60 300 1800

20×5 -0.9% -0.9% -0.6% -1.2% -0.8% -0.2% -2.4% -2.4% -1.7%
20×10 -2.1% -2.0% -1.7% -1.4% -1.2% -0.7% -3.6% -3.0% -2.0%
30×10 -2.2% -2.3% -2.3% -2.1% -2.1% -2.1% -3.8% -3.9% -3.9%
50×10 -2.4% -2.6% -2.6% -2.7% -2.8% -2.9% -5.0% -5.4% -5.4%
20×15 -1.2% -0.7% -0.4% -1.1% -0.8% -0.2% -2.8% -2.0% -0.6%
20×20 -2.3% -2.3% -2.0% -1.9% -1.9% -1.5% -4.3% -3.9% -3.6%

all -1.9% -1.9% -1.7% -1.9% -1.8% -1.5% -3.8% -3.7% -3.2%

Table 3 Relative differences of the results obtained with OJIRLS2 to those computed with OJIRLS1 for
all instance sizes and objectives a) to c).

provides a better value. Similar results were obtained for objectives d) to g). Alto-
gether, the obtained results suggest that OJIRLS2 should be given preference over
OJIRLS1.

4.5 Comparison with benchmarks

As is often the case in scheduling problems, an assessment of the obtained solution
quality by comparing it with the proven optimum is not possible in the current state
of the art. Also, benchmarks from the literature are only available for the NWJS
with makespan objective. Therefore, we resorted to compare the performance of our
approach to benchmark results in the makespan case and for the other objectives with
results obtained via a mixed integer programming (MIP) model that we derived in a
straightforward manner from the compact disjunctive graph formulation.

4.5.1 The makespan objective

As already mentioned, we developed a similar approach for the NWJS with makespan
objective in our previous article (Bürgy and Gröflin, 2013). In fact, OJIRLS1 and
OJIRLS2 have a counterpart in our previous article, named OJILS1 and OJILS2. The
only difference is the optimal job insertion algorithm that has been generalized in
this work. With the makespan objective, the OJI-NWJS-R algorithm determines the
same optimal job insertion as the algorithm developed in (Bürgy and Gröflin, 2013).
Hence, the same solutions are computed in OJIRLS1 and OJIRLS2 as in OJILS1 and
OJILS2, respectively.

A difference is, however, the needed time to compute an optimal job insertion.
To evaluate this difference, we run the (specialized) version OJILS2 from Bürgy and
Gröflin (2013) under the same computational settings as OJIRLS2 with the same time
limit of 7200 seconds, and compared the number of local search repetitions executed
with the two methods. Columns 2 and 3 of Table 4 (left) provide these numbers in
an aggregated form (averaged over all instances of the same size). Column 4 presents
the relative difference of these values.



The no-wait job shop with regular objective 23

version OJIRLS2 OJILS2 rel. diff.

20×5 308768 460680 -33.0%
20×10 321460 485886 -33.8%
30×10 55340 76859 -28.0%
50×10 4288 5924 -27.6%
20×15 276642 415739 -33.4%
20×20 293808 432429 -32.1%

run time 60 300 1800

20×5 0.3% 0.3% 0.1%
20×10 0.5% 0.4% 0.2%
30×10 0.4% 0.3% 0.2%
50×10 0.2% 0.2% 0.2%
20×15 0.2% 0.1% 0.0%
20×20 0.4% 0.3% 0.2%

all 0.3% 0.3% 0.2%

Table 4 (left) Number of local search repetitions executed in 7200 seconds with OJIRLS2 and OJILS2
and the makespan objective averaged over all instances of the same size and relative differences of these
values. (right) Relative difference of the solution quality of OJIRLS2 compared to OJILS2 after 60, 300,
and 1800 second averaged over all instances of the same size.

We observe that the number of local search repetitions is, on average, about 31%
lower in the more general version OJIRLS2. Interestingly, the difference appears to
be independent of the problem size.

To evaluate the effect of the increase in computation time on the solution qual-
ity, we determined the solution quality for OJILS2 in the same way as for OJIRLS2,
namely by a simulation of 100 runs based on the single run of 7200 seconds. For
each instance, we then determined the relative difference of the solution quality ob-
tained by OJIRLS2 and OJILS2, i.e. (sr−sn)/sn, where sr and sn is the average value
(over the 100 runs) obtained with OJIRLS2 and OJILS2, respectively. Table 4 (right)
presents these values for the three run time limits (60, 300, and 1800 seconds) aver-
aged over all instances of the same size. The last line gives the average value over all
instances.

We observe that the solution quality of OJIRLS2 is only slightly lower than
OJILS2. As OJILS2 is currently among the state of the art methods for the NWJS
with makespan objective, we conclude that OJIRLS2 has a good performance with
this objective.

In addition, it is well-known that any problem with maximum tardiness objec-
tive can be easily transformed into a makespan minimization problem. Hence, we
conclude that OJIRLS2 performs also well with the maximum tardiness objective.

4.5.2 Other objective functions

Since no benchmark results are available for the objectives b), c) and e) to g), we
tried to assess the quality of OJIRLS2 with results obtained via a MIP model (with
linear or quadratic objective) using the solver Gurobi 6.0. The MIP is provided in the
Appendix.

Preliminary tests revealed that solutions could only be found in small instances
with the MIP approach. Therefore, we decided to use the instances la01-15/26-30 for
these experiments. For the objectives e) to g), we set the tightness factor f to 2.0 for
la01-10 and 3.5 for la11-15/26-30. For each instance and objective, the MIP model
was run with a time limit of five hours. The objective values of the best solutions (i.e.
the upper bound) and the lower bounds were recorded and compared to the average
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objective total flow
time

total squared
flow time

total
tardiness

total squared
tardiness

number of
tardy jobs

avg

10×5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
15×5 -2.5% -7.4% -4.3% -12.5% 0.0% -5.3%
20×5 -8.0% -22.0% -25.3% -64.7% -6.8% -25.4%
20×10 -18.3% -36.5% -66.6% -90.4% -30.3% -48.4%

Table 5 Relative difference of the results obtained with OJIRLS2 after 300 seconds and the MIP results
for objectives b), c), and e) to g) averaged over all instances of the same size. The last column depicts the
difference averaged over all instances of the same size and all objectives.

results (over the 100 runs) obtained with OJIRLS2 after 300 seconds. The detailed
results can be found in Table 9 in the Appendix. Table 5 summarizes these results by
presenting the relative difference of the average results (over the 100 runs) obtained
with OJIRLS2 after 300 seconds (avg-300) and the MIP upper bound (UB), i.e. (avg-
300 − UB) / UB (averaged over all instances of the same size).

The following observations can be made. Both OJIRLS2 and the MIP approach
perform well in very small instances. Indeed, optimality was proven with the MIP
approach for all instances of size (10×5) and all objectives after a few seconds, and
OJIRLS2 always found an optimal solution. This was also the case for instances of
size (15×5) with the number of tardy jobs objective.

In all other cases, OJIRLS2 gave substantially better results than the MIP ap-
proach. Also, the larger the instances are, the larger the performance difference is.
Indeed, OJIRLS2 gives on average 5.3%, 25.4%, and 48.4% lower values than the
MIP approach in instances of size (15×5), (20×5), and (20×10), respectively.

Altogether, the obtained results suggest that OJIRLS2 performs well with all con-
sidered objectives.

5 Concluding remarks

We addressed the optimal job insertion problem in the no-wait job shop problem with
general regular objective (NWJS-R) and developed a very efficient algorithm for this
problem generalizing our results in case of a makespan objective.

Based on this algorithm, we proposed a simple local search for the NWJS-R and
conducted computational experiments on a large set of instances and objectives. The
obtained results compare favorably with current benchmarks when available, and es-
tablish first benchmarks for the new objectives addressed.

As future direction of research, it would be interesting to develop approaches for
other complex job shop scheduling problems with a general regular objective. The
obtained results suggest that local search methods based on optimal or “near-optimal”
job insertion might be rewarding.
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6 Appendix

6.1 Implementation

A detailed implementation of the OJI-NWJS-R algorithm is given in Listing 1. The
lines of the pseudo-code are numbered for reference in the following discussion.

1 / / I n i t i a l i z a t i o n
2 Compute lKL f o r a l l K,L ∈J + ; o p t := f a l s e ;
3 f o r a l l K ∈J − ∪ τ do hK :=−∞ ; e n d f o r
4 hJ := 0 ; f ∗ := ∞ ; ∆ := J − ;
5 f o r a l l K ∈J − do pK := qK ; e n d f o r
6

7 whi le o p t = f a l s e do
8 / / C a l c u l a t e e a r l i e s t s t a r t i n g t i m e s o f T := {wpK

K : K ∈J −} .
9 g := max{lσJ ; lσK + cpK

KJ : K ∈J −} ;
10 i f g > lσJ then R := {K ∈J − : lσK + cpK

KJ = g} ; e n d i f
11 f o r a l l K ∈J − do
12 hK := max{hK ; cpL

JL + lLK : L ∈ ∆} ;
13 e n d f o r
14 hτ := max{hτ ; lJτ ; cpL

JL + lLτ : L ∈ ∆} ;
15 f o r a l l K ∈J ∪ τ do αK := max{lσK ;g+hK} ; e n d f o r
16 E v a l u a t e f (α) ;
17 i f f (α)< f ∗ then
18 T ∗ := {wpK

K : K ∈J −} ; f ∗ := f (α) ;
19 e n d i f
20

21 i f g = lσJ then o p t := t rue ; re turn ; e n d i f
22 f o r a l l K ∈J −−R do p′K := pK ; e n d f o r
23 f o r a l l K ∈R do
24 i f pK = 1 then o p t := t rue ; re turn ; e l s e
25 p′K := pK −1 ; e n d i f
26 e n d f o r
27 S := R ;
28 whi le S 6= /0 do
29 g e t some K ∈S ;
30 f o r a l l L ∈J −−K do
31 p := p′L ;

32 whi le (w
p′K
K ,wp

L) ∈ Y do
33 i f p = 1 then o p t := t rue ; re turn ; e l s e
34 p := p−1 ; e n d i f
35 end whi le
36 i f p < p′L then p′L := p ; S := S ∪L ; e n d i f
37 e n d f o r
38 S := S −K ;
39 end whi le
40

41 ∆ := /0 ;
42 f o r a l l K ∈J − do
43 i f p′K < pK then ∆ := ∆ ∪K ; pK := p′K ; e n d i f
44 e n d f o r
45 end whi le
46 / / T ∗ i s an o p t i m a l j o b i n s e r t i o n .

Listing 1 OJI-NWJS-R algorithm
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Each iteration of the while loop (line 7) starts with the current insertion T =
{wpK

K : K ∈J −}, of which in a first part (lines 8 to 19), the earliest starting times
αK , K ∈J ∪τ and the objective value f (α) are computed, and the best insertion T ∗

is possibly updated. Then, in a second part (lines 21 to 39), the insertion T ′, maximal
element of the lattice LT as defined in (16) is computed or LT = /0 is asserted (case
opt=true). At completion of the iteration, T ′ = {wp′K

K : K ∈J −}.
We now prove Theorem 5 and determine the computational complexity of the

implementation. We first remark on the calculation of the earliest starting times αK ,
K ∈J ∪ τ . For each K ∈J ∪ τ , hK is updated (and not recalculated according to
(10) in each iteration), based on the observation that hK is monotone non-decreasing
in the sequence of the iterations (see property (15)). Specifically, hK in lines 12 and
14 is updated by considering its previous value and only those terms cpL

JL + lLK that
have (potentially) changed since the previous iteration, i.e. terms cpL

JL + lLK for K ∈ ∆ ,
where ∆ is computed in lines 41 to 45. It is then easy to show that the computational
effort over all iterations is O(n ·∑qK) for calculating all αK , K ∈J ∪ τ , and O(η ·
∑qK) for evaluating f . The overall complexity of the first part is then O(max{n,η} ·
∑qK).

The overall complexity O(n ·∑qK) of the second part is achieved by growing

Ψ(QT ) with a scanning phase and maintaining T ′ = {wp′K
K : K ∈J −} such that

T ′∩Ψ(QT ) = /0 and for each K ∈J −, wp′K
K ∈ T or wp′K+1

K ∈Ψ(QT ). This part is very
similar to the scanning phase implemented in (Bürgy and Gröflin, 2013) and we do
not expand on its details for this reason. Also, its overall complexity of O(n ·∑K qK)
can be shown by replicating arguments used in (Bürgy and Gröflin, 2013).

Altogether, taking into account the all-pairs longest paths computations to deter-
mine the lKL (line 2), K,L ∈ J+, the OJI-NWJS-R algorithm has O(n3,max{n,η} ·
∑K qK) running time.

6.2 Computational results

Detailed computational results are provided in Table 6 for OJIRLS1 with objectives
a) to c), in Table 7 for OJIRLS2 with objectives a) to c), and in Table 8 for OJIRLS2
with objectives d) to g).

6.3 A mixed integer programming formulation

Based on the compact disjunctive graph formulation given in Section 2.3, the follow-
ing mixed integer programming formulation can be derived.

Introduce for each job J ∈J + variable αJ indicating the starting time of job
J, and let α be the vector of these starting time variables. Let J pair be the set of
all (unordered) pairs of distinct jobs {J,K} ∈J ×J . Then, for each pair {J,K} ∈
J pair and each p ∈ {1, . . . ,qJK} introduce a binary variable yp

JK with the meaning
that yp

JK is 1 if J and K are positioned with respect to each other as specified in
selection SP

[JK], and 0 otherwise.
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Minimize f (α) (18)
subject to

αJ−ασ ≥ cσJ for all J ∈J , (19)
ατ −αJ ≥ cJτ for all J ∈J , (20)

αK−αJ ≥
qJK

∑
p=1

cp
JK ∗ yp

JK and (21)

αJ−αK ≥
qJK

∑
p=1

cp
KJ ∗ yp

JK for all {J,K} ∈J pair, (22)

qJK

∑
p=1

yp
JK = 1 for all {J,K} ∈J pair, (23)

ασ = 0, (24)

yp
JK ∈ {0,1} for all {J,K} ∈J pair and p ∈ {1, . . . ,qJK}. (25)

The parameters cσJ , cJτ and cp
JK are specified in (2), (3), (4), and Proposition 1.

For each pair of jobs, constraints (23) ensure that exactly one feasible way of posi-
tioning the two jobs with respect to each other is selected. Then, constraints (19) to
(22) ensure that all precedence constraints corresponding to this selection are satis-
fied.

Table 9 provides detailed results on the application of this model to instances with
objectives b), c) and e) to g), using the solver Gurobi 6.0.
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objective makespan total flow time tot. squared flow time
(in units of 10 000)

run time 60 300 1800 60 300 1800 60 300 1800

20×5
la11 1652 1636 1623 17256 17098 16980 1984 1942 1905
la12 1473 1458 1436 15135 14836 14644 1581 1554 1528
la13 1621 1603 1589 17068 16935 16771 1905 1864 1838
la14 1666 1637 1601 17918 17706 17520 2103 2049 1989
la15 1700 1681 1674 18229 18100 18036 2159 2121 2092

20×10
la26 2604 2553 2510 29316 28938 28532 5384 5241 5123
la27 2759 2712 2673 30903 30530 30191 5986 5841 5723
la28 2663 2616 2580 29768 29472 29258 5558 5408 5291
la29 2456 2419 2374 27543 27249 27002 4739 4602 4514
la30 2628 2579 2515 28686 28321 27987 5313 5175 5021

30×10
la31 3739 3691 3649 59636 58644 57815 15162 14657 14262
la32 4086 4033 3959 64777 63741 62944 17948 17473 17040
la33 3710 3663 3620 58998 58180 57391 14757 14353 13933
la34 3793 3750 3707 60826 59859 59227 15603 15146 14710
la35 3818 3765 3717 61207 60352 59699 15836 15415 14903

50×10
swv11 5745 5703 5668 147388 145919 144425 56666 55503 54411
swv12 5773 5713 5653 148990 146810 144656 57551 56467 55565
swv13 5899 5840 5801 151643 150378 148988 60136 59088 58060
swv14 5649 5589 5519 145309 143885 142686 54894 53844 53090
swv15 5608 5563 5523 145088 143752 142519 54764 53731 52686
swv16 6195 6125 6057 158205 155871 153904 65708 63688 61924
swv17 6000 5924 5845 152096 150199 146951 61143 59354 57464
swv18 6037 5972 5916 154688 152871 151199 62832 61159 59473
swv19 6298 6234 6162 160329 158492 156229 67413 65885 64543
swv20 6003 5945 5889 153797 151444 149284 61899 60466 59021

20×15
swv06 3326 3294 3286 38785 38557 38291 9135 9006 8930
swv07 3260 3226 3205 37612 37241 36939 8639 8486 8300
swv08 3478 3431 3423 40837 40046 39541 9925 9634 9359
swv09 3311 3279 3251 39084 38877 38716 9160 9031 8937
swv10 3530 3505 3482 40518 40261 40139 9870 9713 9617

20×20
yn1 2503 2456 2409 28558 28139 27788 5022 4866 4759
yn2 2492 2445 2399 28811 28251 27790 5068 4887 4733
yn3 2450 2398 2349 28273 27686 27145 4871 4592 4420
yn4 2577 2535 2499 29681 29221 28791 5364 5216 5042

Table 6 Average results (over the 100 runs) of OJIRLS1 with objectives a) to c) and run time limits 60,
300, and 1800 seconds.
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objective makespan total flow time tot. squared flow time
(in units of 10 000)

run time 60 300 1800 60 300 1800 60 300 1800

20×5
la11 1638 1624 1619 17090 16985 16980 1949 1925 1898
la12 1457 1439 1421 14890 14685 14631 1539 1484 1452
la13 1609 1595 1585 16888 16766 16741 1863 1837 1830
la14 1638 1607 1580 17650 17533 17473 2024 1973 1953
la15 1694 1679 1672 18075 17993 17933 2126 2096 2078

20×10
la26 2547 2501 2480 28992 28675 28429 5212 5092 4999
la27 2717 2673 2630 30394 30141 29845 5732 5627 5533
la28 2615 2577 2554 29434 29224 29161 5379 5289 5246
la29 2397 2363 2323 26999 26682 26626 4531 4439 4389
la30 2566 2508 2455 28294 28016 27944 5151 5041 4983

30×10
la31 3655 3602 3560 58470 57773 57317 14458 13995 13627
la32 3990 3931 3886 63387 62380 61584 17305 16745 16180
la33 3620 3575 3543 57606 56645 55809 14177 13831 13487
la34 3707 3660 3616 59602 58578 57699 15012 14571 14044
la35 3752 3696 3629 59912 59169 58353 15326 14884 14589

50×10
swv11 5622 5566 5505 143652 141879 140683 54213 52636 51596
swv12 5649 5582 5535 145481 143343 141845 55118 53583 52194
swv13 5766 5688 5637 147785 146305 144614 56979 55792 54966
swv14 5528 5461 5388 141453 139977 137939 52306 50879 50014
swv15 5493 5431 5380 141837 140054 138815 52339 51390 50343
swv16 6035 5965 5897 153745 151530 149701 62247 60489 58976
swv17 5823 5759 5696 147834 145564 143528 57735 56325 55009
swv18 5893 5801 5740 150083 147529 145483 59090 57524 56348
swv19 6125 6038 5965 155448 153586 151551 63841 62083 60715
swv20 5867 5791 5749 149764 147248 143831 58650 56741 55121

20×15
swv06 3296 3282 3278 38503 38278 38269 8991 8920 8915
swv07 3219 3196 3188 37218 36894 36880 8380 8278 8248
swv08 3437 3423 3423 40173 39631 39485 9440 9225 9221
swv09 3276 3251 3246 38727 38678 38669 8970 8894 8871
swv10 3482 3461 3453 40054 39991 39991 9649 9608 9607

20×20
yn1 2450 2399 2369 28111 27786 27542 4839 4685 4589
yn2 2425 2376 2342 28227 27641 27367 4858 4669 4513
yn3 2387 2354 2317 27674 27087 26722 4605 4440 4298
yn4 2528 2482 2435 29123 28682 28255 5151 4999 4864

Table 7 Average results (over the 100 runs) of OJIRLS2 with objectives a) to c) and run time limits 60,
300, and 1800 seconds.
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objective max. tardiness tot. tardiness tot. squared tard. no. of tardy j.
(in units of 1 000)

run time 60 300 1800 60 300 1800 60 300 1800 60 300 1800

20×5
la11 385 381 381 1847 1843 1843 616 616 616 4.9 4.3 4.0
la12 335 332 330 1588 1581 1581 437 417 406 5.0 5.0 5.0
la13 395 392 392 1890 1820 1808 584 566 566 6.0 6.0 6.0
la14 442 432 428 2040 2009 2009 826 796 781 5.9 5.6 5.0
la15 483 475 474 2396 2364 2363 931 895 892 6.0 6.0 6.0

20×10
la26 372 350 341 1473 1363 1324 485 416 394 3.7 3.1 3.0
la27 612 582 562 2328 2191 2094 1165 1005 884 5.0 4.9 4.6
la28 413 379 356 1575 1403 1356 547 418 368 3.8 3.4 3.0
la29 324 298 295 1307 1191 1114 366 330 325 3.6 3.1 3.0
la30 358 344 339 936 815 781 301 258 242 3.2 3.0 3.0

30×10
la31 575 538 486 2871 2397 1853 1408 1125 998 5.7 5.2 4.9
la32 721 666 603 4084 3630 3267 2425 1874 1534 6.4 5.9 5.4
la33 562 506 443 3214 2875 2524 1629 1325 1140 5.7 5.1 4.8
la34 751 710 666 4192 3799 3389 2625 2178 1813 7.0 6.7 6.1
la35 749 703 634 3879 3532 3128 2373 1983 1605 6.9 6.4 6.0

50×10
swv11 1032 974 930 10136 9167 8322 8234 7275 6704 12.3 11.5 11.0
swv12 1139 1064 1016 12186 11030 9604 11356 9878 9070 13.2 12.5 12.1
swv13 1099 1041 997 11175 10216 9427 9438 8175 7161 12.4 11.7 11.1
swv14 1086 1016 967 10475 9418 8280 8446 7262 6411 12.7 11.8 11.2
swv15 1155 1089 1030 11701 10716 10059 10824 9520 8634 13.3 12.6 12.1
swv16 1751 1681 1600 18709 17149 15906 25606 22542 18833 15.8 15.1 14.4
swv17 1546 1469 1421 17779 16203 14922 21823 19085 17234 14.5 13.8 13.2
swv18 1675 1585 1502 18545 16564 14736 23899 20582 18511 15.4 14.5 13.7
swv19 1774 1690 1601 20032 18532 17474 27367 23959 21310 15.9 15.3 14.7
swv20 1649 1562 1508 18607 17124 16038 24513 21206 18877 15.4 14.7 14.2

20×15
swv06 645 644 644 2813 2810 2810 1321 1294 1294 4.9 4.6 4.1
swv07 696 689 689 2753 2735 2735 1408 1398 1398 5.1 5.0 5.0
swv08 748 746 746 3560 3528 3525 2055 2042 2036 5.0 4.9 4.4
swv09 771 750 748 3037 3005 3004 1933 1893 1893 5.4 5.0 5.0
swv10 862 854 854 3992 3964 3958 2545 2456 2445 6.0 5.9 5.7

20×20
yn1 583 541 510 2186 1953 1767 1062 862 742 5.2 5.0 4.8
yn2 573 532 496 2254 1972 1759 1059 855 672 5.1 4.9 4.5
yn3 547 504 467 2101 1871 1634 921 752 631 5.3 5.0 5.0
yn4 520 489 456 2116 1889 1597 983 831 731 4.9 4.6 4.1

Table 8 Average results (over the 100 runs) of OJIRLS2 with objectives d) to g) and run time limits 60,
300, and 1800 seconds.
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