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Abstract The Blocking Job Shop with Rail-bound Transportation (BJS-RT) consid-

ered here is a version of the job shop scheduling problem characterized by the absence

of buffers and the use of a rail-bound transportation system. The jobs are processed

on machines and are transported from one machine to the next by mobile devices

(called robots) that move on a single rail. The robots cannot pass each other, must

maintain a minimum distance from each other, but can also “move out of the way”.

The objective of the BJS-RT is to determine for each machining operation its

starting time and for each transport operation its assigned robot and starting time, as

well as the trajectory of each robot, in order to minimize the makespan.

Building on previous work of the authors on the flexible blocking job shop and

an analysis of the feasible trajectory problem, a formulation of the BJS-RT in a dis-

junctive graph is derived. Based on the framework of job insertion in this graph, a

local search heuristic generating consistently feasible neighbor solutions is proposed.

Computational results are presented, supporting the value of the approach.

Keywords job shop scheduling · blocking · rail-bound transportation · robots ·
disjunctive graph · job insertion · tabu search

1 Introduction

Job shop scheduling problems in practice often display features that are not addressed

in the classical job shop problem. Among these features figures limited buffer capac-

ity or even the absence of buffers. This latter case is commonly referred to as the

blocking job shop. A second feature is processor flexibility allowing for an operation
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to be executed not only on a preassigned machine, but on any machine chosen from

a specified set. A third feature is the presence of mobile devices that transport the

jobs from one machine to the next. If these devices do not interfere with each other in

their movements, they can be treated as ”normal” machines with sequence dependent

set-up times between their operations. However, mobile devices, e.g. robots, cranes

or AGV’s, often interact with each other, increasing substantially the complexity of

the scheduling problem. Besides decisions on machine assignment to operations and

starting times of operations, trajectories of the mobile devices must also be deter-

mined.

The job shop problem addressed here displays all three features to some extent

and will be called the Blocking Job Shop with Rail-bound Transportation (BJS-RT).

It can be described informally as follows.

Given are jobs, machines and mobile devices which we call robots. A job is pro-

cessed on machines in a sequence of machining operations and is transported from

one machine to the next by a robot in transport operations. Thus a job can be seen as

a sequence of alternating machining and transport operations.

There are no buffers, i.e. a job, once started and until its completion, is either on

a machine or on a robot. After completing a machining operation, a job might wait

on the machine - in effect blocking it - until it is picked up by a robot. Similarly, after

completing a transport operation, a job must wait on the robot until being handed

over to the machine for the next operation. There is processor flexibility: while a

machining operation is executed on a preassigned machine, a transport operation can

be executed by any robot. Finally, the robots move on a rail along which the machines

are located. They cannot pass each other and must maintain a minimum distance from

each other, but can move ”out of the way”. Also, a robot can move at a speed up to a

limit which can be robot-dependent.

The objective is to determine the starting time of each transport and machining

operation, the assigned robot of each transport operation, and the trajectory, i.e. the

location at any time, of each robot, in order to minimize makespan.

Note that sequence-dependent set-up times between transport operations are nee-

ded in order to model idle moves of robots. We also allow set-up times between

machining operations.

A small example is introduced here to illustrate a BJS-RT environment and a solu-

tion represented graphically. It consists of three machines m,m′,m′′, two robots r1,r2

with minimum distance δ between them and three jobs J,J′,J′′. The operations are

numbered from 1 to 11 and the three jobs J,J′,J′′ comprise respectively operations

1,2,3; 4,5,6,7,8 and 9,10,11. Detailed input data of the example will be given in

the next section. Figure 1 sketches a possible physical layout. A solution is depicted

in Figure 2 in a Gantt chart. Thick bars represent take-over, processing and hand-over

steps while narrow bars represent (filled) waiting times and (hatched) minimum du-

rations of idle moves. The numbers refer to the operations. Feasible trajectories of

the robots are also displayed by two black lines. Thick line sections indicate that the

robot is loaded with a job while thin sections stand for idle moves. The black dots on

the lines indicate the start or completion of a hand-over or take-over step.
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Fig. 1: Layout in the example.
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Fig. 2: A schedule with makespan 21 in the example.

To our knowledge, the BJS-RT has not yet been addressed in the literature. Nev-

ertheless, related scheduling problems have been treated that display some of the

features of the BJS-RT. They can be classified into three groups: job shop with block-

ing, job shop with transportation, and application-specific problems involving robot

transportation. We briefly present selected papers from theses three research direc-

tions.

The Blocking Job Shop (BJS) has been tackled by several authors, e.g. Brizuela

et al (2001), Mascis and Pacciarelli (2002), Brucker et al (2006) and Gröflin and

Klinkert (2009). We also point out our recent extension of the BJS in (Gröflin et al,

2011) that includes machine flexibility, as it will constitute a starting basis in the

sequel.

Job shop scheduling problems that include transportation have also been studied.

Hurink and Knust (2005) consider a single transportation robot in a classical Job

Shop (JS). Bilge and Ulusoy (1995), Brucker and Strotmann (2002), Khayat et al

(2006), Deroussi et al (2008) and Lacomme et al (2010) tackle a similar problem

with multiple identical robots (with no interaction between them). Only few papers

address the BJS with transportation. Brucker et al (2012) recently studied the cyclic

BJS with one transportation robot.

To our knowledge, no paper considers a job shop setting (JS or BJS) with multiple

robots interacting with each other, although the value of incorporating interactions be-
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tween robots and limited buffer capacity has been recognized by several authors. For

instance Khayat et al (2006) suggested as future research to “include testing conflict

avoidance and limited buffer capacities in a job shop setting”.

Numerous papers deal with application-specific problems occurring in the context

of factory crane scheduling, hoist scheduling and scheduling of cranes in container

terminals. The following contributions are among the more closely related to the BJS-

RT.

Aron et al (2010) study the problem of finding trajectories for two identical fac-

tory cranes moving on a single rail. To each crane is assigned a sequence of trans-

portation tasks that must be executed within given time windows. The cranes are

allowed to move out of the way to avoid collisions.

In electroplating facilities, panels are covered with a coat of metal by immersing

them sequentially in tanks, and hoists move the panels from tank to tank. Scheduling

the coating operations as well as the movements of the hoists is commonly addressed

as the hoist scheduling problem, cf. Manier and Bloch (2003). Versions with multiple

hoists have been studied by several authors, for example by Manier et al (2000),

Leung and Zhang (2003) and by Leung et al (2004). In these applications, empty

hoists can move out of the way in order to avoid collisions, whereas loaded hoists

have to move directly from tank to tank.

Crane scheduling in container terminals addresses the problem of scheduling

transport operations (storage, retrieval and relocation) of containers executed by yard

cranes. Multiple cranes have been considered e.g. by Ng (2005) who partitions the

yard into non-overlapping areas, one for each crane, to eliminate the occurrence of

collisions, and by Li et al (2009) who use a time-discretized MIP formulation to en-

force a minimum distance between cranes at any time period.

Several authors emphasize that the presence of multiple robots increases com-

plexity, e.g. Leung et al (2004) write: “the scheduling problem for multi-hoist lines is

significantly more difficult than for single-hoist lines because of the additional prob-

lem of hoist collision avoidance.”

The paper is organized as follows. The next section describes formally the BJS-

RT and gives a first problem formulation based on schedules with trajectories. In

Section 3, a projection of the solution space of the first formulation is derived, yield-

ing a disjunctive graph formulation of the BJS-RT. Based on this disjunctive graph, a

local search heuristic is proposed in Section 4 and computational results are presented

in Section 5. The Appendix gives an algorithm for finding feasible trajectories.

Graphs are needed for the formulations and the local search heuristic. They will

be directed and the following standard notation will be used. An arc e = (v,w) has

a tail (node v), and a head (node w), denoted by t(e) and h(e) respectively. Also,

given a graph G = (V,E), for any W ⊆ V , γ(W ) = {e ∈ E : t(e) and h(e) ∈ W},

δ−(W )= {e∈E : t(e) /∈W and h(e)∈W}, δ+(W )= {e∈E : t(e)∈W and h(e) /∈W}
and δ (W ) = δ−(W )∪δ+(W ). These sets are defined in G, we abstain however from

a heavier notation, e.g. δ+
G (W ) for δ+(W ). It will be clear from the context which

underlying graph is meant. Finally, in a graph G=(V,E,d) with arc valuation d ∈R
E ,

a path (or cycle) in G of positive length will be called a positive path (or cycle) and a

path of longest length a longest path.
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2 A first problem formulation

In this section, we formulate the BJS-RT by using our problem formulation of the

flexible blocking job shop in (Gröflin et al, 2011) and extending it to take into account

the interactions between robots.

2.1 Notation and data

Let M and R be the sets of machines and robots respectively. The locations of the

machines and robots along and on the rail are measured on an x-axis. For each ma-

chine m ∈ M, let am be its fixed location. Also, for each robot r ∈ R, let x(r, t) denote

the (variable) location of r at time t, and aσr and aτr be prescribed initial and end

location, i.e. x(r,0) = aσr and x(r,T ) = aτr must hold at makespan T (the choice of

the symbols σ and τ will become clear in the sequel). Furthermore, for each robot

r ∈ R, let vr be its maximum speed, and δ > 0 be the minimum distance to be main-

tained between two consecutive robots on the rail. Finally, L is the usable rail length:

0 ≤ x(r, t)≤ L for all r ∈ R and all t.
Let J be the set of all jobs and I = IM ∪IR be the set of all operations, partitioned

into set IM of machining operations and set IR of transport operations. Each operation

i ∈ IM is executed on a preassigned machine mi ∈ M and each transport operation

i ∈ IR can be executed by any robot r ∈ R.

A job J ∈ J is a set of operations {i : i ∈ J} and J ⊆ 2I forms a partition of I,

i.e. any operation i ∈ I is in exactly one job J ∈ J . A job {i : i ∈ J} is ordered in a

sequence and sometimes denoted as the ordered set {J1,J2, ....,J|J|}, Jq denoting the

q-th operation of job J. Two operations i, j of job J are consecutive if i = Jq and j =
Jq+1 for some q, 1 ≤ q < |J|. The operations of a job are alternately machining and

transport operations, and we assume that |J| is odd, Jq ∈ IM for q odd and Jq ∈ IR for

q even, 1 ≤ q ≤ |J|. Note that typically, the first operation J1 will consist in loading

job J at some storage place or device, and the last operation J|J| will represent the

unloading of completed job J.

Each operation i ∈ I = IM ∪ IR is decomposed into three successive steps: a take-

over step oi, a processing step which is either a machining or a transport step, and a

hand-over step oi. For each i ∈ I, let aoi and aoi be the locations of its hand-over and

take-over steps. Note that these locations are determined by the machine locations:

if i ∈ IM , aoi = aoi = ami ; if i ∈ IR, i ∈ J and j,k ∈ J are the (machining) operations

preceding and following i, then aoi = ao j = am j and aoi = aok = amk .

For each machining operation i ∈ IM , let di be the duration of its machining step,

and for each transport operation i ∈ IR and each robot r ∈ R, let dr
i = |aoi −aoi |/vr be

the minimum duration of its transport step on r, namely the time needed by r to cover

the transport distance at maximum speed.

For each pair of consecutive operations i, j of a job J, the hand-over step of i and

the take-over step of j are synchronized and thus have same duration, called transfer

time. This time might depend on the robot r used for the transfer, and is denoted dr
i j if

i ∈ IR is executed by r, r ∈ R and j ∈ IM , or i ∈ IM and j ∈ IR is executed by r, r ∈ R.
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Fig. 3: Four operations h, i, j and k are illustrated in a Gantt chart. h and i are consecutive in one job, and j
and k are consecutive in another job. Machining operations h, j are executed on machine m and transport

operations i, k can be executed on either robot r1 or r2. The last two operations as well as all involved

take-over and hand-over steps are depicted by dashed lines to indicate this choice. Some durations are

given to illustrate our notation.

Also, if i ∈ IM is the first operation of a job, let dld,i be the loading time of the

job, and if i ∈ IM is the last operation of a job, let di,uld be the unloading time.

Finally, there are set-up times between consecutive operations on a machine or a

robot. For any two distinct operations i, j ∈ IM with m = mi = m j, if j immediately

follows i on m, a set-up of duration di j occurs on machine m between the hand-over

step oi of i and the take-over step o j of j. Also, for each machining operation i ∈ IM ,

an initial set-up of duration dσ i (an earliest starting time) can be specified, as well

as a final set-up of duration diτ (a ”tail”), meaning that a time of at least diτ lapses

between the completion time of i and the overall finish time (makespan).

Similarly, for any two distinct operations i, j ∈ IR and r ∈ R, if both i and j
are executed on robot r and j immediately follows i on r, a ”set-up” of duration dr

i j
occurs on robot r, corresponding to the minimum duration of the idle move of r from

the location of the hand-over step oi of i to the location of the take-over step o j of

j, i.e. dr
i j = |aoi −ao j |/vr. Finally, for each i ∈ IR and r ∈ R, the initial and final set-

up times are defined as dr
σ i = |aσr − aoi |/vr and dr

iτ = |aoi − aτr|/vr, the minimum

time needed by r to cover the distance from its initial location to the location of the

take-over oi, respectively from the location of the hand-over oi to its end location.

Figure 3 illustrates in a Gantt chart the described structure of the jobs and our

notation.

A few standard assumptions concerning the data are made. All durations are non-

negative. Durations of machining, hand-over and take-over steps, and maximum robot

speeds are positive. Also, since we allow a transport operation to be executed by

any robot, enough machine-free space on the rail left and right should be available:

(|R|−1)δ ≤ min{am : m ∈ M} and max{am : m ∈ M} ≤ L− (|R|−1)δ must hold.
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The data for the example are as follows. M = {m,m′,m′′}, R = {r1,r2} and

J = {J,J′,J′′}. The jobs are identified with their ordered set of operations J =
{1,2,3}, J′ = {4,5,6,7,8} and J′′ = {9,10,11}. The set IM of machining opera-

tions is {1,3,4,6,8,9,11} and operations 6 and 9 are on machine m, 3 and 8 on m′
and 1,4 and 11 on m′′. The set IR of transport operations is {2,5,7,10}. The locations

of the machines are am = 3,am′ = 5,am′′ = 7, and the initial and final locations of the

robots aσr1
= aτr1

= 0 and aσr2
= aτr2

= 2. The minimum distance between adjacent

robots is δ = 2, the maximum speed of the robots is vr1
= vr2

= 2, and the rail length

is L = 9. For i = 1,3,4,6,8,9,11, the respective durations di of the machining step

are 3,2,2,4,1,3,3. All transfer times dr
i j = dr

ji, r ∈ R and i ∈ IM, j ∈ IR, loading times

dld,i for i = 1,4,9 and unloading times di,uld for i = 3,8,11 are 1. Set-up times di j for

any i, j ∈ IM with mi = m j, and initial and final set-up times dσ i and diτ , i ∈ IM are

all 0.

2.2 The flexible blocking job shop relaxation

We temporarily ignore the interactions between the robots on the rail. This relaxed

BJS-RT is then a special case of the flexible blocking job shop as introduced in

(Gröflin et al, 2011). Based on this work, we give a disjunctive graph formulation

of the relaxed BJS-RT. Thanks to the simple type of machine flexibility, notation has

been somewhat simplified.

The disjunctive graph G = (V,A,E,E ,d) is constructed as follows, V denoting

the node set, A the set of conjunctive arcs, E the set of disjunctive arcs, E the family

of disjunctive arc pairs and d ∈ R
A∪E the arc valuation.

To each operation i∈ IM is associated a chain of four nodes v1
i , v2

i , v3
i , v4

i and three

arcs (v1
i ,v

2
i ), (v

2
i ,v

3
i ) and (v3

i ,v
4
i ) representing the take-over step, the machining step

and hand-over step of i on mi. Let Vi = {v1
i ,v

2
i ,v

3
i ,v

4
i } denote the node set of the chain

associated to i. Similarly, to each operation i ∈ IR and each r ∈ R is associated the

chain with nodes v1
ir, v2

ir, v3
ir, v4

ir and arcs (v1
ir,v

2
ir), (v

2
ir,v

3
ir) and (v3

ir,v
4
ir) and let Vir =

{v1
ir,v

2
ir,v

3
ir,v

4
ir}. The node set of G consists of the union of the Vi’s and Vir’s, together

with two additional nodes σ and τ representing fictive start and end operations of

duration 0 to occur before, respectively after, all other operations, i.e. V = ∪{Vi : i ∈
IM;Vir : i ∈ IR,r ∈ R;{σ ,τ}}.

Denote by Ifirst and Ilast the subsets of operations that are first and last operations

of jobs, respectively. Note that Ifirst∪ Ilast ⊆ IM . The set A of conjunctive arcs consists

of the following arcs, indicated with their weights:

1. For each i ∈ IM , three arcs (v1
i ,v

2
i ), (v

2
i ,v

3
i ), (v

3
i ,v

4
i ), with respective weights: dld,i

if i ∈ Ifirst and 0 if i ∈ IM − Ifirst; di; di,uld if i ∈ Ilast and 0 if i ∈ IM − Ilast. The three

arcs are referred to as take-over arc, machining arc and hand-over arc.

2. For each i∈ IR and r ∈R, three arcs (v1
ir,v

2
ir), (v

2
ir,v

3
ir) and (v3

ir,v
4
ir), with respective

weights 0, dr
i and 0. The three arcs are referred to as take-over arc, transport arc

and hand-over arc.

3. For any two consecutive operations i = Jq and j = Jq+1 of a job J and r ∈ R: if

i∈ IM and j ∈ IR, two pairs of synchronization arcs (v3
i ,v

1
jr), (v

1
jr,v

3
i ) and (v4

i ,v
2
jr),
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Fig. 4: Disjunctive graph of the example.

(v2
jr,v

4
i ) of weight 0 joining the (starts and the ends of the) hand-over step of i

and take-over step of j, and a pair of transfer arcs (v3
i ,v

2
jr), (v

2
jr,v

3
i ) of respective

weight dr
i j and −dr

i j. If i ∈ IR and j ∈ IM , two pairs of synchronization arcs

(v3
ir,v

1
j), (v

1
j ,v

3
ir) and (v4

ir,v
2
j), (v

2
j ,v

4
ir) of weight 0, and a pair of transfer arcs

(v3
ir,v

2
j), (v

2
j ,v

3
ir) of weight dr

i j and −dr
i j.

4. For each i ∈ IM , an initial set-up arc (σ ,v1
i ) of weight dσ i and a final set-up arc

(v4
i ,τ) of weight diτ . For each i ∈ IR and r ∈ R, an initial set-up arc (σ ,v1

ir) of

weight dr
σ i and a final set-up arc (v4

ir,τ) of weight dr
iτ .

The set E of disjunctive arcs is given as follows. For any two distinct operations

i, j ∈ IM with mi = m j, there are two disjunctive arcs (v4
i ,v

1
j), (v

4
j ,v

1
i ) with respective

weights di j, d ji. For each r ∈ R and distinct i, j ∈ IR, there are two disjunctive arcs

(v4
ir,v

1
jr), (v

4
jr,v

1
ir) with respective weights dr

i j, dr
ji.

E is the family of all pairs {(v4
i ,v

1
j),(v

4
j ,v

1
i )}, i, j ∈ IM and {(v4

ir,v
1
jr), (v

4
jr,v

1
ir)},

r ∈ R, i, j ∈ IR of disjunctive arcs introduced above. A generic element of E , i.e. a

pair of disjunctive arcs, will sometimes be denoted by {e,e} and arc e will be said to

be the mate of e and vice-versa.

Figure 4 depicts the disjunctive graph of the example. For clarity however, nodes

σ and τ , as well as all disjunctive arcs, except two pairs denoted by e,e and e′,e′,
have been omitted. A pair of synchronization arcs is represented by an undirected

edge.

Definition 1 A mode is a tuple π = (π(i) : i ∈ IR) ∈ Π = R× ...×R assigning to

each transport operation i ∈ IR a robot π(i) ∈ R.

A mode π selects a node-induced subgraph Gπ in G defined as follows. Let

V π = ∪{Vi : i ∈ IM;Vi,π(i) : i ∈ IR;{σ ,τ}}, Aπ = A∩ γ(V π), Eπ = E ∩ γ(V π) and

E π = {{e,e} ∈ E : e∪ e ⊆ Eπ}. The resulting graph Gπ = (V π ,Aπ ,Eπ ,E π ,d) is the

disjunctive graph associated to the mode π . We take the liberty of denoting the re-

striction of d to Aπ ∪Eπ again by d.

Definition 2 For any mode π and S ⊆Eπ , (π,S) is called a selection. Selection (π,S)
is said to be positive acyclic if the graph (V π ,Aπ ∪ S,d) contains no positive cycle.
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(π,S) is said to be complete if S∩{e,e} �= /0 for all {e,e} ∈ E π , and to be feasible if

it is positive acyclic and complete.

A feasible selection (π,S) specifies with π the assignment of robots to the trans-

port operations and with S the sequencing of the operations on the machines and

robots. For any mode π , let F π = {S ⊆ Eπ : (π,S) is feasible}.

Given π ∈ Π and S ∈ F π , any α = (αv : v ∈V π) satisfying:

αw −αv ≥ d(v,w) for all arcs (v,w) ∈ Aπ ∪S (1)

ασ = 0 (2)

specifies starting times for the events corresponding to the nodes of V π . ατ is the

makespan. For any machining operation i ∈ IM , αv for v = v1
i ,v

2
i ,v

3
i ,v

4
i is the starting

and completion time of its take-over step oi and the starting and completion time

of its hand-over step oi. The same holds for any transport operation i ∈ IR and αv
for v = v1

i,π(i),v
2
i,π(i),v

3
i,π(i),v

4
i,π(i). Note that the lag between the starting time and the

completion time of all these steps is exactly the transfer time. Let

Ω (π,S) = {α ∈ R
V π

: α satisfies (1)− (2)}
Ω (π) = ∪S∈F π Ω (π,S) .

Definition 3 The solution space of the relaxed BJS-RT is Ω = {(π,α) : π ∈ Π ,α ∈
Ω (π)}. Any (π,α) ∈ Ω is called a schedule.

The relaxed BJS-RT is the problem of finding a schedule (π,α) ∈ Ω minimiz-

ing ατ . Note that, given π ∈ Π and S ∈ F π , finding a schedule α minimizing the

makespan is finding α ∈ Ω (π,S) minimizing ατ . As is well-known, this is easily

done by longest path computation in (V π ,Aπ ∪ S,d) and letting αv be the length of

a longest path from σ to v for all v ∈ V π . The relaxed BJS-RT can therefore also be

formulated as: ”among all feasible selections, find a selection (π,S) minimizing the

length of a longest path from σ to τ in (V π ,Aπ ∪S,d)”.

A remark on the machine set-up times is in order. They should satisfy the so-

called weak triangle inequality (cf. Brucker and Knust (2011), p. 11) for the disjunc-

tive graph formulation to be valid. Otherwise, arcs between non-consecutive opera-

tions on a machine may become active when computing longest paths in (V π ,Aπ ∪
S,d), yielding a wrong makespan since set-ups take place only between consecu-

tive operations on a machine. However, the disjunctive graph model and the solution

method proposed in Section 4 can easily be adapted to handle arbitrary set-up times

by ignoring all disjunctive arcs that link non-consecutive operations on a machine

when computing longest paths in (V π ,Aπ ∪S,d).

2.3 Schedules with trajectories

Not every schedule (π,α) ∈ Ω is feasible in the BJS-RT. Indeed, due to interference

of the robots with each other, there might not exist feasible trajectories x(r, .), r ∈ R,

that ”meet” the schedule. Given (π,α) ∈ Ω , we examine now which constraints the

trajectories must satisfy in order to be feasible.
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First, since the robots r ∈ R cannot pass each other on the rail, it is convenient to

index them r1,r2, . . . ,rK ,K = |R| according to their natural ordering on the rail, with

their locations at any time t satisfying x(r1, t) < x(r2, t) < ... < x(rK , t). From now

on, for ease of notation, reference to robot rk will be made simply through its index

k, e.g. x(rk, t) is denoted by x(k, t) and the maximum speed vrk by vk.

Second, main input data for the trajectories are the locations, starting times and

durations of the take-over and hand-over steps of all transport operations. For brevity,

we refer in the sequel to a take-over or a hand-over step simply as a transfer step,

when distinction is not necessary. For k = 1, . . . ,K, let Ok = {oi,oi : i∈ IR with π(i) =
k} be the set of transfer steps executed by robot k. The location of a transfer step

o ∈ Ok is denoted by ao, its starting time by α(o) and its duration by d(o). Note that

these data are all determined by the schedule (π,α), e.g. if o = oi ∈ Ok for some

i ∈ IR, then ao = aoi , α(o) = αv1
ik

and d(o) = dk
ji, where i is in some job J and j

is the machining operation preceding i in J. It is convenient to add to Ok a fictive

initial and final transfer step σk and τk, both of duration 0, and respective locations

the prescribed initial and final locations aσk and aτk, and starting times 0 and ατ .

Denote again by Ok the so extended set and let O =
⋃

k Ok.

Feasible trajectories x(k, .), k = 1, . . . ,K, must satisfy the following constraints

(3) to (6):

|x(k, t ′)− x(k, t)| ≤ (t ′ − t)vk for all k = 1, . . . ,K and t ′ > t ≥ 0 (3)

x(k, t) = ao for all k = 1, ..,K, o ∈ Ok and t with α(o)≤ t ≤ α(o)+d(o) (4)

x(k, t)+δ ≤ x(k+1, t) for all k = 1, . . . ,K −1 and t ≥ 0 (5)

0 ≤ x(1, t) and x(K, t)≤ L for all t ≥ 0 (6)

(3) expresses that a robot cannot cover a greater distance than allowed by its maxi-

mum speed. (4) enforces that a robot is at ao while it executes the transfer step o. (5)

maintains a minimum distance δ between two adjacent robots, while (6) restricts the

moves of the robots to the interval [0,L].

Given a schedule (π,α) ∈ Ω , let

X (π,α) = {x = (x(k, .),k = 1, . . . ,K) : x satisfies (3) to (6)}

Definition 4 The solution space of the BJS-RT is Γ = {(π,α,x) : (π,α) ∈ Ω and

x ∈ X (π,α)}. Any (π,α,x) ∈ Γ is called a schedule with trajectories. The BJS-RT

is the problem of finding a schedule with trajectories minimizing ατ .

3 A compact formulation

The objective in this section is to transform the BJS-RT into a “pure” scheduling

problem, i.e. we derive a formulation whose decision variables involve only starting

times and robot assignments and whose constraints ensure the existence of feasible

trajectories. The following development formalizes this approach.
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Since the objective function in the BJS-RT depends only on α , a more compact

formulation is obtained in principle by projecting Γ onto the space of the schedules.

Letting

Γproj = {(π,α) : ∃ (π,α,x) ∈ Γ }
= {(π,α) : (π,α) ∈ Ω and X (π,α) �= /0},

the BJS-RT is then the problem of finding a schedule (π,α) ∈ Γproj minimizing ατ .

The usefulness of this formulation depends on how the condition X (π,α) �= /0 can

be expressed more adequately and trajectories x = (x(k, .),k = 1, . . . ,K) ∈ X (π,α)
can be determined efficiently.

3.1 The feasible trajectory problem

Definition 5 Given a schedule (π,α) ∈ Ω , the feasible trajectory problem (FTP) at
(π,α) is the problem of determining trajectories x = (x(k, .),k = 1, . . . ,K) ∈ X (π,α)
or establishing X (π,α) = /0.

We characterize when the FTP at (π,α) has a feasible solution, i.e. X (π,α) �= /0,

and define for this purpose the following discrete version of the FTP at (π,α).
Consider the set Q = {α(o),α(o)+d(o) : o∈O} of distinct starting and comple-

tion times of all transfer steps, and order Q such that Q = {t1, ..., tQ} with Q ≤ 2|O|
and t1 < ... < tQ. Also, for any 0≤ t ≤ t ′, let P[t, t ′] = {p : 1≤ p≤Q and t ≤ tp ≤ t ′}.

For all k = 1, ...,K, p = 1, ...,Q, denote by xkp = x(k, tp) the location of the robot k at

tp and consider the system:

|xk,p+1 − xkp| ≤ (tp+1 − tp)vk for all k = 1, ...,K, p = 1, ...,Q−1, (7)

xkp = ao for all k = 1, ...,K, o ∈ Ok and p ∈ P[α(o),α(o)+d(o)], (8)

xkp +δ ≤ xk+1,p for all k = 1, ...,K −1, p = 1, ...,Q, (9)

0 ≤ x1p and xK p ≤ L for all p = 1, ...,Q. (10)

(7) to (10) give a discrete version of the FTP at (π,α) as the following holds.

Proposition 1 i) For any (x̂(k, .): k = 1, ...,K) satisfying (3) to (6), x̂kp = x̂(k, tp),
k = 1, ...,K, p = 1, ...,Q satisfies (7) to (10).
ii) For any x̂kp, k = 1, ...,K, p = 1, ...,Q, satisfying (7) to (10),
x̂(k, .), k = 1, ...,K, defined by:

x̂(k, tp) = x̂kp, p = 1, ...,Q and (11)

x̂(k, t) =
tp+1 − t
tp+1 − tp

x̂kp +
t − tp

tp+1 − tp
x̂k,p+1, tp < t < tp+1, p = 1, ...,Q−1 (12)

satisfies (3) to (6).

Proof i) is obvious. ii) is easily proven by observing that with (11) and (12), the

trajectory x̂(k, .), k ∈ {1, ...,K}, is simply obtained by joining in the time-location

space each pair of consecutive points (tp, x̂kp), (tp+1, x̂k,p+1) by a line segment. ��
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Definition 6 For any k, k′ with 1 ≤ k < k′ ≤ K, and any o ∈ Ok, o′ ∈ Ok′ , let

Δ kk′
oo′ = [(k′ − k)δ +ao −ao′ ]/min{vl : k ≤ l ≤ k′}. (13)

Assume Δ kk′
oo′ > 0. Then obviously o and o′ cannot occur simultaneously. Suppose

o′ is completed at time t ′ and o begins at time t > t ′. In the interval [t ′, t], robot

k′ needs to cover at least distance (k′ − k)δ + ao − ao′ , and so do all robots l with

k ≤ l ≤ k′. Similarly if t < t ′, all robots l with k ≤ l ≤ k′ have to travel at least

distance (k′ − k)δ +ao −ao′ in the interval [t, t ′], hence

α(o)+d(o)+Δ kk′
oo′ ≤ α(o′) or α(o′)+d(o′)+Δ kk′

oo′ ≤ α(o).

Following prior work, we call such a disjunctive constraint a collision avoidance con-

straint. Indeed, constraints of this type have been introduced e.g. by Manier et al

(2000), Leung and Zhang (2003) and Leung et al (2004) in the hoist scheduling prob-

lem. They establish necessity and sufficiency of these constraints by a case-by-case

analysis of the various ways collisions between two hoists can occur. We show here

necessity and sufficiency in the following Lemma by identifying the discrete FTP as a

network problem in a graph H and showing the equivalence of the collision avoidance

constraints with the absence of negative cycles in H.

Lemma 1 (7) to (10) admits a solution if and only if for all o ∈ Ok, o′ ∈ Ok′ with
k < k′ and Δ kk′

oo′ > 0:

α(o)+d(o)+Δ kk′
oo′ ≤ α(o′) or α(o′)+d(o′)+Δ kk′

oo′ ≤ α(o) (14)

Proof Let H = (W,B,c) be the following graph. Node set W consists of node w∗ and

K ×Q nodes wkp, k = 1, ...,K, p = 1, ...,Q. The arc set B and the valuation c ∈ R
B

are given in the table below:

arcs of B weights c
(wk+1,p,wkp) −δ k = 1, ...,K −1, p = 1, ...,Q,
(wkp,wk,p+1) (tp+1 − tp)vk k = 1, ...,K, p = 1, ...,Q−1,
(wk,p+1,wkp)
(w∗,wkp) ao for all k = 1, ...,K, o ∈ Ok
(wkp,w∗) −ao and p ∈ P[α(o),α(o)+d(o)],
(w1p,w∗)0 0

p = 1, ...,Q.
(w∗,wK p)

L L

Note that parallel arcs are present, explaining the indexing 0 and L in (w1p,w∗)0 and

(w∗,wK p)
L. Graph H is depicted in Figure 5.

It is easy to see that the system (7) to (10) is equivalent to the following system

of inequalities in graph H = (W,B,c):

xw − xv ≤ cvw for all (v,w) ∈ B, (15)

xw∗ = 0, (16)



The blocking job shop with rail-bound transportation 13

∗ ao

−ao

k, p

k+1, p

k, p+1

k+1, p+1

−δ−δ

(tp+1 − tp)vk

Fig. 5: Graph H. (Not all arcs are shown.)

i.e. x satisfying (15) and (16) is a feasible potential function. By a well-known result

of combinatorial optimization (see e.g. Cook et al (1997), p. 25), H = (W,B,c) admits

a feasible potential function - and hence (7) to (10) admits a feasible solution - if and

only if there exists no cycle of negative length in H.

We prove therefore that constraints (14) hold if and only if H has no negative

cycle.

First, the following observations are useful. Consider the graph H− obtained from

H by deleting node w∗. H− contains no cycle of negative length. Also, there exists a

path in H− from a node wk′p′ to a node wkp if and only if k ≤ k′. Finally, it is easy to

see that a shortest path in H− from wk′p′ to wkp has length |tp′ − tp| ·min{vl : k ≤ l ≤
k′}− (k′ − k)δ .

i) Suppose now that (14) does not hold: there are o ∈ Ok, o′ ∈ Ok′ , with k′ > k and

Δ kk′
oo′ > 0, such that Δ kk′

oo′ > α(o′)−α(o)− d(o) and Δ kk′
oo′ > α(o)−α(o′)− d(o′). If

o and o′ are both in execution at some time tp, p ∈ {1, . . . ,Q}, then the cycle Z in H
consisting of arc (w∗,wk′p), a shortest path in H− from wk′p to wkp and arc (wkp,w∗)
has length

c(Z) = ao′ − (k′ − k)δ −ao =−Δ kk′
oo′ ·min{vl : k ≤ l ≤ k′},

hence c(Z) < 0. If o is executed before o′, i.e. α(o)+ d(o) ≤ α(o′), let p and p′ be

such that tp = α(o)+ d(o) and tp′ = α(o′). Then the cycle Z in H consisting of arc

(w∗,wk′p′), a shortest path in H− from wk′p′ to wkp and arc (wkp,w∗) has length

c(Z) = ao′ + |tp′ − tp| ·min{vl : k ≤ l ≤ k′}− (k′ − k)δ −ao

= [α(o′)−α(o)−d(o)−Δ kk′
oo′ ] ·min{vl : k ≤ l ≤ k′}< 0.

Finally, if o′ is executed before o, i.e. α(o′)+d(o′)≤α(o), the existence of a negative

cycle is shown similarly.

ii) Conversely, suppose H has a cycle Z of negative length. By the preceding

observations, Z must pass through node w∗, leaving w∗ by an arc b′ with head wk′p′
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and entering w∗ by an arc b with tail wkp for some k ≤ k′ and p, p′. Also, we may

assume that Z takes a shortest path in H− from wk′p′ to wkp. Hence Z has length

c(Z) = cb′ + cb + |tp′ − tp| ·min{vl : k ≤ l ≤ k′}− (k′ − k)δ < 0.

First, we exclude the following three cases for b′ and b. Case a): b′ = (w∗,wK p′)
L

and b = (w1p,w∗)0. We may assume p′ = p since (w1p,w∗)0 ∈ B with same weight

0, so that c(Z) = L+0− (K −1)δ < 0, violating the standard assumption max{am :

m ∈ M} ≤ L− (K − 1)δ . Case b): b′ = (w∗,wK p′)
L and b = (wkp,w∗) with weight

−ao. We may assume p′ = p since (w∗,wK p′)
L ∈ B with same weight L, so that

c(Z) = L−ao − (K−k)δ < 0, in contradiction to max{am : m ∈ M} ≤ L− (K−1)δ .

Case c) b′ = (w∗,wk′p′) with weight ao′ and b = (w1p,w∗)0. We may assume p = p′,
so that c(Z) = ao′ −(k′ −1)δ < 0, contradicting the assumption (K−1)δ ≤ min{am :

m ∈ M}.

Therefore arc b′ is (w∗,wk′p′) for some o′ ∈ Ok′ and α(o′)≤ tp′ ≤ α(o′)+d(o′),
and arc b is (wkp,w∗) for some o ∈ Ok and α(o)≤ tp ≤ α(o)+d(o). The case k = k′
can be excluded, using the fact that for any two o,o′ ∈ Ok, with say, α(o) ≤ α(o′),
α(o′)− (α(o)+d(o))≥ |ao′ −ao| holds. Therefore k < k′ and the length of Z is

c(Z) = ao′ −ao + |tp′ − tp| ·min{vl : k ≤ l ≤ k′}− (k′ − k)δ

= [|tp′ − tp|−Δ kk′
oo′ ] ·min{vl : k ≤ l ≤ k′}< 0

Therefore |tp′ −tp|−Δ kk′
oo′ < 0, so that Δ kk′

oo′ > 0, and both Δ kk′
oo′ > tp′ −tp and Δ kk′

oo′ > tp−
tp′ hold. Then Δ kk′

oo′ > tp′ − tp ≥ α(o′)−α(o)− d(o) and Δ kk′
oo′ > tp− tp′ ≥ α(o)−

α(o′)−d(o′), so that (14) is violated for this pair o, o′. ��

Assuming that the FTP at (π,α) has a feasible solution, trajectories x = (x(k, .),
k = 1, . . . ,K) can be determined by finding a potential function in H - an elementary

task in network flows - and applying Proposition 1. Furthermore, a natural objective

is to find trajectories minimizing the total distance traveled by the robots. It is easy

to define a network problem in an adapted graph H that finds a potential optimizing

this objective and then apply Proposition 1. However, optimal trajectories can also

be determined more efficiently with an algorithm based on geometric arguments, as

shown in the Appendix.

3.2 Projection onto the space of schedules

A compact disjunctive graph formulation of the BJR-RT is now readily obtained by

introducing in G = (V,A,E,E ,d) additional conjunctive and disjunctive arcs to take

into account constraints (14) for any mode.

First, observe that each transfer step of a transport operation on a given robot is

represented by a specific arc in G. Indeed, a transfer step o on robot k is either oi or

oi for some i ∈ IR executed by k; oi on k is represented in G by the arc (v1
ik,v

2
ik) and

oi on k by (v3
ik,v

4
ik).
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Fig. 6: Some collision avoidance arcs (e, ē, f , g and h) in the example.

Second, conflicts of a transfer step o of a transport operation executed by a robot

k with the fictive initial and final transfer steps σk′ and τk′ of the robots k′ �= k, simply

result in an initial set-up time and a final set up time for o on k. Also, a conflict

between two transfer steps o,o′ (of distinct transport operations) of a same job simply

results in a precedence constraint.

Conjunctive arcs are now added to A and disjunctive arcs are added to E, respec-

tively arc pairs to E , as specified in the three steps below, convening that arcs are
added only if their weight is positive:

1. For all o ∈ {oi,oi : i ∈ IR} and all k, 1 ≤ k ≤ K, if (v,w) represents o on k, add

to A the arc (σ ,v) with weight Δ .k
σo = max{0;Δ kk′

oσk′ : k < k′;Δ k′k
σk′o : k > k′}, and

(w,τ) with weight Δ k.
oτ = max{0;Δ kk′

oτk′ : k < k′;Δ k′k
τk′o : k > k′}. (If an arc is added

that is parallel to an arc already present, retain only the arc with largest weight.)

2. For each o,o′ ∈ {oi,oi : i ∈ IR} where o and o′ are transfer steps of distinct trans-

port operations of a same job, assuming without loss of generality that o precedes

o′, for each k �= k′, if (v,w) and (v′,w′) represent o on k and o′ on k′, add to A the

arc (w,v′) with weight Δ kk′
oo′ if k′ > k and Δ k′k

o′o if k′ < k.

3. For all o,o′ ∈ {oi,oi : i ∈ IR} where o and o′ are transfer steps of distinct jobs,

and all k, k′ with 1 ≤ k < k′ ≤ K, if (v,w) and (v′,w′) represent o on k and o′ on

k′, add to E, respectively to E , the pair of arcs (w,v′),(w′,v), both of weight Δ kk′
oo′ .

Denote by G′ = (V,A′,E ′,E ′,d′) the disjunctive graph thus obtained. Figure 6

depicts G′ in the example, obtained by adding in G of Figure 4 conjunctive and dis-

junctive arcs as described above. For sake of clarity, only two additional arcs f and g
from step 1, arc h from step 2 and disjunctive arc pair e, ē from step 3 are displayed.

The weights of e, ē, f , g and h are 2, 2, 3.5, 3.5 and 1. In the example, G contains

altogether 15 disjunctive arcs pairs, and 32 arcs in step 1, 5 arcs in step 2 and 26

disjunctive arc pairs in step 3 are added to obtain G′.

Define in G′ modes, (complete, acyclic, feasible) selections, and F ′π , Ω ′ (π,S′),
Ω ′(π) and Ω ′ similarly to the corresponding definitions in G given in Section 2.2.

Theorem 1 The projection Γproj of the set of schedules with trajectories (defined in
G) is precisely the set of schedules Ω ′ defined in G′.
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Proof i) The FTP at (π,α) in G admits a feasible solution, i.e. X (π,α) �= /0, if and

only the constraints (14) hold. Indeed, by Proposition 1 the FTP at (π,α) admits

a feasible solution if and only if its discrete version (7) to (10) admits a feasible

solution, hence by Lemma 1, if and only if (14) holds. Therefore Γproj = {(π,α) : π ∈
Π , α ∈ Ω (π) and (14) holds}.

ii) Let (π,α)∈Ω ′ = {(π,α) : π ∈Π , α ∈Ω ′ (π)}, hence α ∈Ω ′ (π,S′) for some

S′ ∈ F ′π . Then for S = S′ ∩E ∈ F π and, since Ω ′ (π,S′) ⊆ Ω (π,S), α ∈ Ω (π,S) .
Therefore α ∈ Ω (π). Also, the constraints (1)’ for (v,w) ∈ A′ ∪S′ −A∪S ensure that

(14) is satisfied by α . Hence Ω ′ ⊆ Γproj. Conversely, let (π,α) ∈ Γproj. There exists

S ∈ F π such that α ∈ Ω (π,S) and α satisfies (14). Then S′ = S∪{(v,w) ∈ E ′ −E :

αv ≤ αw} ∈ F ′π and α ∈ Ω ′ (π,S′), hence α ∈ Ω ′ (π) and Γproj ⊆ Ω ′. ��

The BJS-RT can therefore be formulated as: ”among all feasible selections in

G′, find a selection (π,S′) minimizing the length of a longest path from σ to τ in

(V π ,A′π ∪S′,d′)”.

4 A local search for the BJS-RT

Since the relaxed BJS-RT of Section 2.2 is a Flexible Blocking Job Shop (FBJS), the

local search heuristic proposed below is inspired from our approach for the FBJS in

(Gröflin et al, 2011). It operates in the disjunctive graph G′ and its main ingredient is

the construction of a feasible neighborhood.

4.1 A feasible neighborhood

Given a current feasible selection, a feasible neighbor selection will be generated by

rescheduling an operation, keeping the machine or robot it is currently assigned to,

or - if it is a transport operation - also allowing it to change its assigned robot. Moves

of other operations might be ”implied” to maintain feasibility.

The framework for the construction of a feasible neighbor selection is the so-

called job insertion similarly to (Gröflin et al, 2011), although slightly complicated

by the presence of the disjunctive collision avoidance arcs.

Given a feasible selection (π,S) in G′ and a (machining or transport) operation

i ∈ IM ∪ IR, let J be the job to which i belongs, and consider the following inser-

tion problem: extract J and (re-)insert J, keeping the same mode π for all opera-

tions j ∈ IR− i and allowing any robot k for i if i ∈ IR. The ways to insert J are

described by the feasible selections, called insertions, in the disjunctive subgraph

GJ = (VJ ,AJ ,EJ ,EJ ,d) of G′, called insertion graph and obtained as follows.

Delete from V all node sets Vjk, j ∈ IR − i and k �= π( j), obtaining VJ . Then,

letting WJ = ∪{Vj : j ∈ J;Vj,π( j) : j ∈ J− i;Vik : k = 1, ...K} be the subset of nodes of

GJ associated to J, add to A the set

RJ = S−δ (WJ) (17)



The blocking job shop with rail-bound transportation 17

obtaining AJ , and delete all disjunctive arcs not incident to J, i.e. obtaining EJ =
E ′ −δ (WJ) and EJ accordingly.

Note that if i ∈ IR, the set of possible modes in GJ is Π ′ = {πk : k = 1, ...K}
where πk is given by πk( j) = π( j) for j ∈ IR − i and πk(i) = k, and if i ∈ IM , the

mode remains unchanged, i.e. Π ′ = {π}. In both cases, π ∈ Π ′.
Let Gπ ′

J = (V π ′
J ,Aπ ′

J ,Eπ ′
J ,E π ′

J ,d) be the disjunctive subgraph of GJ associated to

π ′, π ′ ∈ Π ′. For any T ⊆ Eπ ′
J , (π ′,T ) is an insertion; (π ′,T ) is i) positive acyclic

if (V π ′
J ,Aπ ′

J ∪ T,d) contains no positive cycle; ii) complete if {e,e}∩ T �= /0 for all

(e,e) ∈ E π ′
J and iii) feasible if positive acyclic and complete.

Let T S = S ∩ δ (WJ). Clearly,
(
π,T S

)
is a feasible insertion in GJ . Generating

a feasible neighbor selection (π ′,S′) will be done by generating in GJ a feasible

neighbor insertion (π ′,T ′) of
(
π,T S

)
and setting S′ = RJ ∪T ′ where RJ is given by

(17).

To derive feasible neighbor insertions, we use the concepts of closure and span
in graph Gπ ′

J = (V π ′
J ,Aπ ′

J ,Eπ ′
J ,E π ′

J ,d). They are introduced in (Gröflin and Klinkert,

2007; Gröflin et al, 2011) and recalled here for completeness. For any T ⊆ Eπ ′
J , let

ϕ(T ) = T ∪{e ∈ Eπ ′
J −T : (V π ′

J ,Aπ ′
J ∪T ∪ e,d) contains a positive cycle Z with Z �

e}. Clearly, any feasible insertion (π ′,T ′) with T ⊆ T ′ must contain ϕ(T ), hence

arcs ϕ(T ) are implied by T . We call T closed if ϕ(T ) = T . It is easy to see that if

T and T̂ are closed then T ∩ T̂ is closed, so that the following closure operator Φ is

well-defined for all T ⊆ Eπ ′
J :

Φ(T ) = ∩{T̂ ⊆ Eπ ′
J : T ⊆ T̂ , T̂ closed}.

Φ(T ) is the unique smallest closed set containing T and can be computed by repeat-

edly applying ϕ , defining ϕr(T ) = T for r = 0 and computing ϕr(T ) = ϕ(ϕr−1(T ))
for r = 1,2, ..., until ϕr+1(T ) = ϕr(T ).

The span of an insertion comprises all its arcs together with their mates. Specifi-

cally, for any T ⊆ Eπ ′
J , the span of T is the set

[T ] = {e ∈ Eπ ′
J : e or e ∈ T}.

Feasible neighbors (π ′,T ′) of
(
π,T S

)
are now constructed as follows. If the mode

remains unchanged, i.e. π ′ = π , a neighbor
(
π,T f

)
is generated by choosing some

arc e ∈ T S incident to i and enforcing its mate. Specifically, choose e ∈ T S ∩δ (Vi) if

i ∈ IM , or e ∈ T S ∩δ (Vi,π(i)) if i ∈ IR, and enforce its mate f = e:

T f = Φ( f )∪ (T S − [Φ( f )]). (18)

The neighbor insertion
(
π,T f

)
keeps the operation i on the same machine or

robot, enforces f and all arcs implied by f (set Φ( f )) and keeps T S on the remaining

part (set T S − [Φ( f )]).
If the mode changes, i is a transport operation which is moved to another robot

k �= π(i), i.e. the new mode is πk �= π , and i needs to be inserted in the sequence

of the other operations on k. However, also the positioning of the hand-over step oi
and take-over step oi of i with respect to those transfer steps on a robot l in conflict
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with oi, respectively oi, needs to be specified for all l �= k. A feasible neighbor in-

sertion
(
πk,T F

)
is thus generated in the graph Gπk

J = (V πk

J ,Aπk

J ,Eπk

J ,E πk

J ,d) by the

following three successive steps. i) Choose some arc set F that enforces i to be before

some operation on robot k and puts the transfer steps of i before some conflicting

transfer steps. Take all arcs implied by F , say P = Φ(F). ii) Place operation i after

all operations on robot k that have not already been sequenced with respect to i, and

similarly, place the transfer steps of i after all conflicting transfer steps that have not

been sequenced with respect to the transfer steps of i, by choosing E−
i − [P] and tak-

ing all arcs implied by it, say Q = Φ(E−
i − [P]). iii) Keep T S on the remaining part.

Specifically,

T F = P∪Q∪ (T S − [P∪Q]) where (19)

P = Φ(F) and Q = Φ(E−
i − [P]).

Technically, set F is build as follows. Let Fi = {e ∈ Eπk

J : t(e)∈Vik and h(e)∈Vjk

for some j /∈ J}, and for all l �= k, Fl
oi
= {e ∈ Eπk

J : t(e) = v2
ik and h(e) ∈Vjl for some

j /∈ J} and Fl
oi
= {e ∈ Eπk

J : t(e) = v4
ik and h(e) ∈Vjl for some j /∈ J}. Note that some

of these sets might be empty. At most one arc from each of these sets will be chosen

to ”position” i with respect to the other operations on k, and oi and oi with respect

to transfer steps in conflict with oi, respectively oi, on a robot l, l �= k. In order to

generate a ”close” neighbor insertion, these choices are made so that i is likely to be

scheduled at a time not too far from its time in the current schedule. Let αv, v ∈V , be

the earliest starting times computed in (V π
J ,Aπ

J ∪T S,d). Determine the arc fi ∈Fi with

αh( fi) = min{αh(e) ≥ αv1
iπ(i)

: e ∈ Fi} convening fi = /0 if it does not exist. Similarly,

for all l �= k, determine the arcs f l
oi
∈ Fl

oi
with αh( f l

oi
) = min{αh(e) ≥ αv1

iπ(i)
: e ∈ Fl

oi
}

and f l
oi
∈ Fl

oi
with αh( f l

oi
) = min{αh(e) ≥ αv3

iπ(i)
: e ∈ Fl

oi
}, with the same convention if

an arc does not exist. Then, F = { fi, f l
oi
, f l

oi
: 1 ≤ l ≤ K, l �= k} and E−

i = {e ∈ Eπk

J :

h(e) ∈Vik}.

The feasibility of the insertions (π,T f ) and (πk,T F) determined by (18) and

(19) can be shown similarly to corresponding proofs in (Gröflin et al, 2011), after

establishing the short cycle property of the disjunctive graphs Gπ
J and Gπk

J .

4.2 A tabu search

Based on the neighborhood described above, the following tabu search has been de-

veloped. First, only critical operations are considered for rescheduling. Given a fea-

sible selection (π,S) in G′, let L be the arc set of an arbitrary longest path from σ
to τ in (V ′π ,A′π ∪ S,d). The arcs of S∩L are usually called critical arcs. For any

e ∈ S, call i the tail operation of e if t(e) ∈Vi or Vi,π(i) and the head operation of e if

h(e) ∈Vi or Vi,π(i). Critical operations are head or tail operations of critical arcs.

For each e ∈ S∩L , two neighbors (π,T f ) are generated according to (18), with i
being the head and tail operation of e respectively, and f = e. Additionally, if i is the

head or tail operation of e and is a transport operation, then i is moved to an adjacent
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robot k= π(i)+1 or π(i)−1, provided 1≤ k≤K, and the neighbor insertion (πk,T F)
is constructed according to (19). Between two and six neighbors are thus generated

for each critical arc.

A tabu list of maximum length maxt is maintained, containing entries of the maxt
last iterations. Let L(π,S) be the list associated to the selection (π,S). The list as-

sociated to the initial selection is empty. In an iteration, i.e. after moving from the

selection (π,S) to a neighbor (π ′,S′), L(π ′,S′) is obtained from L(π,S) by dropping the

oldest entry if |L(π,S)|= maxt, and placing in the first position either the entry e = f if

the neighbor is generated with an insertion (π,T f ), or the entry (i,π(i)) if operation

i has been moved from robot π(i) to robot k with an insertion (πk,T F). Hence, the

tabu list L(π,S) contains arcs that were reversed and old robot assignments that were

changed. A neighbor (π ′,S′) of (π,S) is tabu if it contains an arc or robot assignment

that is in the tabu list, i.e. S′∩ L(π,S) �= /0 or π ′(i) = l for some (i, l) ∈ L(π,S).
For further details, e.g. on the choice of the move to be executed, the termination

of a search path after a maximum number maxiter of iterations without improving

the best makespan and the maintenance of a list of bounded length maxl of elite

solutions, a feature that has proven useful also in the “classical” job shop (Nowicki

and Smutnicki, 1996), we refer the reader to (Gröflin et al, 2011).

5 Computational results

The tabu search has been implemented (single-threaded) in Java and run on a PC

with 3.1 GHz Intel Core i5-2400 processor (4 threads) and 4 GB memory. Since the

BJS-RT has not been addressed in the literature, we created a test set of 160 instances

starting from the standard job shop instances la01 to la20 introduced by Lawrence

(1984) and adding data to describe the transportation system.

For each Lawrence-instance lapq and number of robots K = 1, . . . ,4, two BJS-RT

instances lapq-E and lapq-V were generated as follows. In both instances, the loca-

tion of machine mi, i = 0, . . . , |M| − 1 is ami = 120+ 50i, where |M| is the number

of machines and i is the number attributed by Lawrence. The initial and final loca-

tions of robot k = 1, . . . ,K are aσk = aτk = 40(k−1). The minimum distance between

adjacent robots is δ = 40, and the rail length is L = 120+ 50(|M|− 1)+ δ (K − 1).
The loading times are dld,i = 10 for all i ∈ Ifirst, the unloading times di,uld = 10 for all

i∈ Ilast, and the initial and final set-up times are dσ i = diτ = 0 for all i∈ IM . In instance

lapq-E, the maximum speeds and transfer times are equal, and there are no machine

set-ups. Specifically, the maximum speed is vk = 10 for all robots k = 1, . . . ,K, the

transfer times are dr
i j = dr

ji = 10 for all r ∈ R, i ∈ IM, j ∈ IR, and the set-up times are

di j = 0 for distinct i, j ∈ IM with mi = m j. In instance lapq-V, the maximum speeds

and transfer times vary, and machine set-ups are present. The maximum speeds vk
and transfer times dr

i j are robot-dependent and generated randomly based on a uni-

form distribution in the interval [5,10] and [5,20], respectively, and machine set-up

times are specified based on a format introduced by Brucker and Thiele (1996) in the

interval [0,40].

With la01 to la20, the problem sizes in the test set are 10× 5 (10 jobs on 5 ma-

chines), 15×5, 20×5 and 10×10. These sizes might appear modest at first glance,
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but should be used with caution when comparing the BJS-RT for example with the

classical job shop problem for which la01 to la20 were originally introduced. In a

BJS-RT, an m × n instance contains nearly twice the number of operations since

for each job with m (machining) operations, m− 1 transport operations are intro-

duced. Moreover, there are typically many collision avoidance constraints between

the 2(m−1)n transfer steps. Finally, flexibility in choosing a robot further increases

complexity.

The computation settings were chosen similarly to (Gröflin et al, 2011). An initial

solution is a permutation schedule generated by choosing randomly a job permutation

and a mode. For each instance, five independent runs with different initial solutions

were performed. The computation time of a run was limited to 1800 seconds. Pa-

rameter tuning was performed for the tabu search in extensive experiments, carefully

observing not only the makespans of the obtained solutions, but also characteristics

such as cycling, usage of the elite solutions and makespan improvement behavior.

Detailed numerical data as well as graphical outputs were helpful in this regard. The

following parameter values were chosen: maxt = 12, maxl = 300 and maxiter = 3000,

and turned out to be quite robust.

Tables 1 and 2 provide detailed results for instances lapq-E and lapq-V, respec-

tively. The first line splits the tables into four groups according to the number of

robots. Columns “best” and “mean” refer to the best and mean results, respectively,

of the five runs. The tables are subdivided horizontally according to the size of the

instances, e.g. the first block reports on instances 10×5 with 10 jobs and 5 machines.

We discuss now the results, evaluating solution quality, convergence behavior of the

tabu search and impact of increasing the number of robots.

Since the BJS-RT has not yet been addressed in publications, a comparison of

our results with benchmarks was not possible. For this reason, we tried to assess the

quality of the tabu search with results obtained via a MIP model that we derived in

a straightforward manner from the disjunctive graph formulation. Instances la01-E

to la05-E with 1 robot have been solved to optimality with the MIP model, using

the solver Gurobi 5.0 and a time limit of five hours. However, with 2 robots, no

feasible solution could even be found for la01-E to la05-E. We reduced the size of

these instances by keeping only the first six jobs (out of ten). These instances, called

la01-E* to la05-E*, were solved by Gurobi, after providing the best solution found

by the tabu search as an initial solution and allowing more computation time. Table

3 shows the results obtained for the instances with 1 robot (left) and 2 robots (right).

Columns “result” give the optimal values or the upper and lower bounds (ub; lb)
if optimality could not be established. Columns “time” give the computation time

in seconds used by Gurobi, and columns “best” and “mean” the results of the tabu

search. The following observations can be made. As is the case in other complex

scheduling problems, only small instances could be solved to optimality with a MIP

approach and even finding a feasible solution appears to be a challenge in multiple

robot instances. Comparing now the MIP and tabu search results, in all 10 instances,

the best of the five runs reached the MIP optimum or upper bound, and all five runs

yield results that are as good or very close. Albeit limited, these results suggest that

the tabu search performs adequately.
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# robots 1 robot 2 robots 3 robots 4 robots
instance best mean best mean best mean best mean

10×5

la01-E 1736 1746 1315 1356 1155 1196 1108 1136

la02-E 1727 1727 1329 1353 1203 1222 1155 1171

la03-E 1695 1695 1262 1284 1089 1124 1044 1104

la04-E 1748 1749 1280 1299 1140 1165 1044 1089

la05-E 1654 1655 1251 1270 1111 1130 1057 1099

15×5

la06-E 2465 2478 1899 1974 1726 1760 1655 1693

la07-E 2473 2496 1964 1990 1707 1764 1638 1659

la08-E 2483 2502 1912 1949 1748 1790 1675 1716

la09-E 2501 2520 2018 2056 1747 1813 1696 1718

la10-E 2529 2550 1968 2014 1777 1818 1692 1748

20×5

la11-E 3381 3399 2640 2749 2349 2478 2424 2446

la12-E 3296 3326 2541 2696 2188 2251 2128 2262

la13-E 3335 3373 2624 2655 2364 2402 2192 2338

la14-E 3391 3419 2690 2823 2499 2604 2323 2433

la15-E 3353 3384 2723 2807 2385 2514 2216 2407

10×10

la16-E 4664 4967 2907 3216 2652 2853 2392 2666

la17-E 4608 4776 3079 3340 2774 2968 2539 2826

la18-E 4655 4827 3304 3438 2699 2857 2476 2881

la19-E 4562 4683 3051 3299 2500 2757 2333 2662

la20-E 4710 4786 3019 3362 2736 2986 2360 2761

Table 1: Best and mean results over five runs (time limit: 1800 seconds per run) in the instances lapq-E

with equal maximum speeds and transfer times, and without machine setup times.

Further support is found by examining the evolution of attained solution quality

over computation time. For this purpose, the best makespan ω at the beginning (initial

solution) and during the execution of the tabu search were recorded for each instance

and run, and its (relative) deviation from the final solution (ω −ω f inal)/ω f inal de-

termined. Figure 7 illustrates these deviations for all instances with 3 robots in an

aggregated way, depicting average deviations (in %) over runs and instances of the

same size. The following can be observed. Initial solutions are far from the obtained

final solutions, with makespans twice to three times as large. Also, most of the im-

provements are found within minutes. Consider for example the 10× 10 instances

with 3 robots. While the deviation is initially 166.4%, it drops to 9.9% and 5.8% after

300 and 600 seconds.

Furthermore, we investigated the impact of adding a robot to the transportation

system. Information of this type may be of interest at the design stage, when capacity

is calibrated or the benefit of installing additional equipment is assessed. We com-

pared each instance lapq-E with K robots with the same instance with K − 1 robots

by determining the relative change in the makespan (meanK −meanK−1)/meanK−1,

where meani, i= 1, . . . ,4, can be found in Table 1, column “mean” of group “i robots”.

Table 4 (left) reports these changes in % in an aggregated way. As expected, adding

a robot reduces the makespan, and this return diminishes with the number of robots.
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# robots 1 robot 2 robots 3 robots 4 robots
instance best mean best mean best mean best mean

10×5

la01-V 3075 3076 2044 2085 1479 1509 1327 1401

la02-V 1673 1673 1460 1508 1386 1423 1355 1425

la03-V 2023 2023 1552 1591 1352 1430 1315 1407

la04-V 2016 2018 1544 1571 1352 1373 1310 1340

la05-V 2034 2044 1254 1291 1221 1233 1199 1241

15×5

la06-V 2974 2997 2257 2297 2002 2139 2072 2159

la07-V 3067 3078 2604 2637 2298 2354 2135 2170

la08-V 3695 3710 2547 2593 2195 2273 2026 2070

la09-V 2394 2430 2199 2272 2022 2129 1928 2050

la10-V 3529 3558 2240 2321 2015 2048 1906 1988

20×5

la11-V 3258 3283 2722 2808 2595 2669 2558 2660

la12-V 3686 3742 3260 3352 2905 2988 2818 2938

la13-V 3152 3201 2905 3013 2732 2799 2557 2626

la14-V 3349 3378 3121 3288 2870 2970 2865 2966

la15-V 4616 4636 3843 3900 3016 3112 2813 2988

10×10

la16-V 5836 6383 3946 4111 3096 3347 2864 3051

la17-V 4352 4584 3836 3959 3168 3311 2828 3111

la18-V 6324 6497 4651 4835 3475 3839 3541 3754

la19-V 6809 7056 4605 4959 3699 3889 3653 4248

la20-V 5980 6252 4376 4739 3459 3825 3294 3484

Table 2: Best and mean results over five runs (time limit: 1800 seconds per run) in the lapq-V instances

with robot-dependent maximum speeds and transfer times, and with machine setup times.

1 robot MIP tabu search

instance result time best mean

la01-E 1736 3000 1736 1746

la02-E (1727;1556) 18000 1727 1727

la03-E 1695 1638 1695 1695

la04-E 1748 7016 1748 1749

la05-E (1654;1347) 18000 1654 1655

2 robots MIP tabu search

instance result time best mean

la01-E* 832 8840 832 835

la02-E* 864 51892 864 864

la03-E* 833 15636 833 833

la04-E* 823 13225 823 823

la05-E* 765 230228 765 765

Table 3: MIP results and computation times compared to best and mean results over five runs (time limit:

1800 seconds per run) of the tabu search.

Going from 1 to 2 robots (column “2 robots”) reduces the makespan significantly, the

range of the decrease being 18% to 31%. Adding a third robot yields a decrease of

10% to 14%, and adding a fourth robot, a decrease of 3% to 5%.

Finally, Table 4 (right) shows the number of tabu search iterations averaged over

instances of the same size. With increasing number of robots and problem size, the

number of iterations drops drastically reflecting the increasing computation time per

iteration. This is due to an increase of the neighborhood size and to the fact that the
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Fig. 7: Relative deviations of the makespan from the final makespan during run time.

size 2 robots 3 robots 4 robots

10×5 -23.4% -11.1% -4.0%

15×5 -20.4% -10.4% -4.6%

20×5 -18.8% -10.8% -2.9%

10×10 -30.7% -13.4% -4.3%

size 1 robot 2 robots 3 robots 4 robots

10×5 883’036 248’778 197’289 141’109

15×5 729’273 131’593 106’908 72’005

20×5 466’302 74’963 60’093 43’113

10×10 515’292 53’927 41’466 32’683

Table 4: (Left) Relative changes in the makespan when adding a robot. (Right) Number of tabu search

iterations per run.

effort for generating a neighbor of type (19) is larger than for a neighbor of type (18)

(about twice as large in our implementation).

The computational results are concluded with Figure 8 which displays a schedule

with makespan 1221 for instance la05-V with 3 robots. Thick bars represent take-

over, processing and hand-over steps while narrow bars represent waiting times. The

numbers refer to the operations, e.g. “2.3” refers to the third operation of job 2. Trans-

port operations are not shown, but can be inferred from the trajectories of the robots.

Thick line sections indicate that the robot is loaded with a job, executing a transport

operation, while thin sections correspond to idle moves.
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6 Concluding remarks

The disjunctive graph formulation of the BJS-RT involves a family of disjunctive arc

pairs that, due to the collision avoidance constraints, is not only substantially larger,

but also of a more complex structure than in scheduling problems where disjunctive

pairs are between operations on a same machine. Nevertheless, the insertion theory

(Gröflin and Klinkert, 2007), which has been applied to the flexible blocking job shop

(Gröflin et al, 2011) and the no-wait job shop (Bürgy and Gröflin, 2013), proved also

valuable in devising a local search for the BJS-RT.

The approach taken for the derivation of the disjunctive graph formulation of the

BJS-RT can be used in other cases by changing the relaxed scheduling problem -

e.g. substituting the flexible blocking job shop by the flexible job shop if sufficient

buffer space is available in the system - or changing the characteristics of the trans-

portation system and accordingly, the corresponding feasible trajectory problem. The

second change raises interesting opportunities from both a research and application

perspective.
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7 Appendix

7.1 Finding Trajectories

Finding feasible trajectories with minimum total travel distance is the problem of

minimizing
K
∑

k=1

Q−1

∑
p=1

|xk,p+1−xkp| subject to constraints (7) to (10). It can be expressed

by the linear program LP Trajectory

Minimize
K

∑
k=1

Q−1

∑
p=1

(y+kp + y−kp)

subject to

xk,p+1 − xkp ≤ (tp+1 − tp)vk for all k = 1, . . . ,K, p = 1, . . . ,Q−1,

xkp − xk,p+1 ≤ (tp+1 − tp)vk for all k = 1, . . . ,K, p = 1, . . . ,Q−1,

xkp − x∗ ≤ ap for all k = 1, . . . ,K, o ∈ Ok and p ∈ P[α(o),α(o)+d(o)],

x∗ − xkp ≤−ap for all k = 1, . . . ,K, o ∈ Ok and p ∈ P[α(o),α(o)+d(o)],

xkp − xk+1,p ≤−δ for all k = 1, . . . ,K −1, p = 1, . . . ,Q,

x∗ − x1p ≤ 0 for all p = 1, . . . ,Q,

xK p − x∗ ≤ L for all p = 1, . . . ,Q,

x∗ = 0,

xk,p+1 − xkp − y+kp ≤ 0 for all k = 1, . . . ,K, p = 1, . . . ,Q−1,

xkp − xk,p+1 − y−kp ≤ 0 for all k = 1, . . . ,K, p = 1, . . . ,Q−1,

y+kp ≥ 0, y−kp ≥ 0 for all k = 1, . . . ,K, p = 1, . . . ,Q−1.
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The above linear program is the dual of a min-cost circulation problem and can be

solved by a min-cost flow algorithm. However, optimal trajectories can be determined

more efficiently with the following algorithm based on geometric arguments.

Assume that the FTP at (π,α) has a feasible solution, and consider Q = {t1, . . . ,
tQ} (see Section 3.1). At each tp, p = 1, . . . ,Q, a given robot k is either required to

be at a fixed location, say ak
p, or there is no such requirement. For p = 1, . . . ,Q, let

{ak(1)
p , . . . ,ak(qp)

p } be the set of fixed locations at tp over all robots (it is non-empty as

at least one robot is at a fixed location at tp), and for k= 1, . . . ,K, let {ak
p(1), . . . ,a

k
p(qk)

}
be the set of all fixed locations of k over all times.

Given k and tp, p ∈ {1, . . . ,Q}, the following lower and upper bounds lk
p and uk

p
hold for the location x(k, tp) at tp:

lk
p = max{(k−1)δ ;ak(q)

p +(k− k(q))δ : k(q)≤ k, 1 ≤ q ≤ qp}
uk

p = min{L− (K − k)δ ;ak(q)
p − (k(q)− k)δ : k(q)≥ k, 1 ≤ q ≤ qp}

Note that if k is at a fixed location ak
p, lk

p = ak
p = uk

p.

It is helpful to consider trajectories in the two-dimensional time-location space

with horizontal axis t and vertical axis x. In this space, a point will be denoted by P =
(t(P),x(P)), t(P), x(P) denoting the t- and x-coordinate of P. For any two points P,P′
where t(P)< t(P′), [P,P′] denotes the (line) segment joining P to P′. Its slope (x(P′)−
x(P))/(t(P′)− t(P)) is denoted θ [P,P′]. A point P∗ is above (below) the segment

[P,P′] if there is P′′ ∈ [P,P′] with t(P′′) = t(P∗) and x(P′′)< x(P∗), (x(P∗)< x(P′′)).
For any k, let Fk

q , q = 1, . . . ,qk, be the fixed points, and Lk
p and Uk

p , p = 1, . . . ,Q,

the lower and upper points for the trajectory of k, i.e. t(Fk
q ) = tp(q), x(Fk

q ) = ak
p(q),

t(Lk
p) = t(Uk

p) = tp, x(Lk
p) = lk

p and x(Uk
p) = uk

p. The following algorithm constructs

for each robot k a piecewise linear trajectory T k.

Algorithm Trajectory
for k = 1, . . . ,K do Trajectory(k,T k) end
Subroutine Trajectory(k,T k)
T := ∪{[Fk

q ,F
k
q+1],1 ≤ q ≤ qk −1}. No segment of T is scanned.

while not all segments of T are scanned do
choose an unscanned [P,P′] ∈ T , and scan [P,P′] as follows:

if there exists some Lk
p above [P,P′] then do

determine θ ∗ = max{θ [P,Lk
p] : Lk

p above [P,P′]} and

Lk
p∗ such that p∗ is the largest p with θ [P,Lk

p] = θ ∗.

T := T ∪{[P,Lk
p∗ ]∪ [Lk

p∗ ,P
′]}− [P,P′].

else
if there exists some Uk

p below [P,P′] then do
determine θ ∗ = min{θ [P,Uk

p ] : Uk
p below [P,P′]} and

Uk
p∗ such that p∗ is the largest p with θ [P,Uk

p ] = θ ∗.

T := T ∪{[P,Uk
p∗ ]∪ [Uk

p∗ ,P
′]}− [P,P′].
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end if

end while

T k := T .

Theorem 2 The trajectories T k, k = 1, . . . ,K, are feasible and each T k is a mini-
mum travel distance trajectory for k.

Proof For any consecutive segments [P,P′], [P′,P′′] ∈ T k, call T k concave at P′ if

P′ is above [P,P′′] and convex at P′ if P′ is below [P,P′′]. We first show that at any

points that are not fixed points of k, T k is concave at a lower point and convex at an

upper point.

Indeed, suppose L′ is a lower point of T k (and not a fixed point). L′ became part

of the trajectory T in the subroutine Trajectory(k,T k) as a lower point L′ = Lk
p∗

above a segment [P,P′] previously in T , with the property that any Lk
p with t(P) ≤

t(Lk
p)< t(Lk

p∗) is not above [P,Lk
p∗ ], and any Lk

p with t(Lk
p∗)< t(Lk

p)≤ t(P′) is below

the line containing [P,Lk
p∗ ]. As a result, from then on and until completion of the

subroutine, for any t with t(P)≤ t < t(L′), T is not above this line, T is on the line

at t(L′), and at any t with t(L′)< t ≤ t(P′), T is below the line. Hence T k is concave

at L′. Similarly, one shows that T k is convex at any upper point that is not fixed.

Examining the constraints (3) to (6), we show now the feasibility of the trajecto-

ries T k, k = 1, . . . ,K.

Suppose (3) does not hold. Then, letting [P,P′] ∈T k be a steepest segment of T k

(with maximum |θ [P,P′]|),
|θ [P,P′]|= |x(P′)− x(P)|/(t(P′)− t(P))> vk. (20)

Assume θ [P,P′] > 0. P cannot be lower and not fixed since T k is concave at such a

point and P′ cannot be upper and not fixed since T k is convex at such a point. Hence

P is upper or fixed and P′ is lower or fixed, and P= (tp,uk
p) and P′ = (tp′ , lk

p′) for some

tp , tp′ , 1 ≤ p < p′ ≤ Q. By (20), lk
p′ −uk

p > (tp′ − tp)vk, contradicting the feasibility

of the FTP, since lk
p′ ≤ x(k, tp′), x(k, tp)≤ uk

p and x(k, tp′)−x(k, tp)≤ (tp′ − tp)vk hold

for any feasible trajectory for k. The case θ [P,P′]< 0 is similar.

Constraints (4) hold since for any transfer step of k with starting and completion

time, say, tp′ and tp′′ , at any tp with p′ ≤ p ≤ p′′, the trajectory of k is fixed (at the

location of the transfer step). Constraints (5) also hold. Indeed, for any k, 1 ≤ k < K,

let trajectories T k and T k+1 be at some t at a minimal (x-) distance from each other.

By the concavity and convexity properties described above, we may assume that at

time t, T k is at a lower or fixed point, or T k+1 at an upper or fixed point. In the first

case, for p such that tp = t, T k is at point Lk
p = (tp, lk

p). By definition of the lower

bounds and feasibility of the FTP, lk+1
p − lk

p ≥ δ , and by construction of T k+1, lk+1
p

is below or on T k+1, hence T k and T k+1 are at least at an (x-) distance δ from each

other. The second case is similar. Finally, (6) obviously holds.

To show that each T k is a trajectory of minimum travel distance, it is enough

to observe that at any step of the subroutine Trajectory(k,T k), the total distance

traveled by T is a lower bound on the total travel distance of any feasible trajectory

for k. ��
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Proposition 2 The trajectory algorithm runs in time O(K|IR|2).
Proof Lower and upper bounds lk

p and uk
p can be computed in O(KQ) if one takes

into account that for any robot k and event p the closest fixed robot at p below (above)

k determines the lower bound lk
p (upper bound uk

p).

Consider now the run time of the trajectory subroutine by estimating the number

of scanned segments and the effort spent for one scan.

As any segment is scanned exactly once, we estimate the number of segments

considered in a run. At the start, the number of segments is bounded by Q−1. In any

scan of a segment, two new segments are added if some point Lk
p∗ or Uk

p∗ is found.

However, any point P of robot k can be selected at most in one scan as Lk
p∗ or Uk

p∗.

Therefore, at most 2Q new segments can be added to trajectory T , hence there are at

most 3Q segments considered in a run. The time spend for scanning a segment [P,P′]
is bounded by the number of events in [P,P′], hence the effort of a scan is O(Q) and

the effort of the subroutine is then O(Q2).
The subroutine is executed for all robots k = 1, . . . ,K, hence the overall effort is

O(KQ2), or O(K|IR|2), since Q ≤ 4|IR|. This effort is smaller than that of a generic

min-cost flow algorithm. KQ+1 is the number of nodes in the network of LP Trajec-
tory. Solving a min-cost flow problem in a network with v nodes and e arcs requires

an effort of O(e loge(e+v logv)) with currently best algorithms (Orlin, 1993; Vygen,

2002). ��
We also observe that in the “classical” case where a job is assumed to have at

most one machining operation on a given machine, this complexity can be related to

the number m of machines and the number n of jobs. Then |IR| ≤ (m− 1)n, and the

trajectory algorithm runs in time O(Km2n2).

Remark 1 The trajectories T k, k = 1, . . . ,K, make use of the variable speed (up to

its maximum vk) of each robot k. If all vk’s are equal, it can be shown that the T k’s,

k = 1, . . . ,K, can be modified such that each robot is moving at maximum speed or

stands still (the travel distance remaining the same and the number of the switches

stand-move being at most Q).
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