Optimal Job Insertion in the No-Wait Job Shop

Reinhard Biirgy - Heinz Groflin

Accepted for publication in Journal of Combinatorial Optimization: Feb 09, 2012
The final publication is available at www.springerlink.com, DOI: 10.1007/s10878-012-9466-y.

Abstract The No-Wait Job Shop (NWIJS) considered here is a version of the job
shop scheduling problem where, for any two operations of a job, a fixed time lag
between their starting times is given. Also, sequence-dependent set-up times between
consecutive operations on a machine can be present. The NWIJS problem consists in
finding a schedule that minimizes the makespan.

We address here the so-called Optimal Job Insertion problem (OJI) in the NWJS.
While the OJI is NP-hard in the classical job shop, it was shown by Groflin & Klinkert
to be solvable in polynomial time in the NWJS. We present a highly efficient algo-
rithm with running time & (n? - max{n,m}) for this problem. The algorithm is based
on a compact formulation of the NWIJS problem and a characterization of all feasi-
ble insertions as the stable sets (of prescribed cardinality) in a derived comparability
graph.

As an application of our algorithm, we propose a heuristic for the NWJS problem
based on optimal job insertion and present numerical results that compare favorably
with current benchmarks.

Keywords no-wait job shop - optimal job insertion - stable sets - comparability
graph
1 Introduction

Job insertion in job shop scheduling problems is the process of inserting a job in a
given “schedule” of other jobs specified by their sequences on the machines. The

Reinhard Biirgy
Department of Informatics, University of Fribourg, Boulevard de Pérolles 90, CH-1700 Fribourg, Switzer-
land, E-mail: reinhard.buergy @unifr.ch

Heinz Groflin
Department of Informatics, University of Fribourg, Boulevard de Pérolles 90, CH-1700 Fribourg, Switzer-
land, E-mail: heinz.groeflin @unifr.ch

2 Reinhard Biirgy, Heinz Groflin

Optimal Job Insertion problem (OJI) consists in finding a job insertion minimizing
some objective, usually makespan or maximum tardiness.

Job insertion is of interest for applications as well as for method development and
scheduling theory. In some environments, jobs arrive successively and scheduling is
done in a rolling fashion, inserting a job at its arrival into the current schedule.

Methodologically, job insertion has been used by several authors as a tool in de-
vising scheduling heuristics. These methods build up a schedule by successive job
insertion or improve it by repeatedly extracting and reinserting a job. As examples,
we mention in the classical job shop the work of Werner and Winkler (1995), in the
blocking job shop Groflin and Klinkert (2009) and in the no-wait job shop Schuster
(2006). More references will be given in Section 5.

In these methods, a job is usually not inserted optimally. Indeed, finding an opti-
mal job insertion is in general a nontrivial problem in scheduling theory. A pioneering
contribution was the work by Kis (2001) and Kis and Hertz (2003) on the OJI-JS, the
Optimal Job Insertion problem in the classical Job Shop. They gave a polyhedral
characterization of the family of feasible job insertions as well as a procedure yield-
ing lower and upper bounds for the OJI-JS, which is a NP-hard problem.

In a different approach, we defined in (Groflin and Klinkert, 2007) more generally
“insertions” (of a set of operations) as selections in so-called (disjunctive) insertion
graphs. We showed that if these graphs have certain properties, the feasible insertions
can be characterized as stable sets (of prescribed cardinality) in a bipartite graph and
devised an algorithm for deriving lower and upper bounds for the optimal insertion
problem. These general results apply in particular to job insertion, and not only in the
classical job shop. As examples, we examined job insertion in the multi-processor
task job shop, the blocking job shop and the no-wait job shop. Moreover we showed
that the algorithm for deriving lower and upper bounds solves optimally the OJI-
NWIS, the Optimal Job Insertion problem in the No-Wait Job Shop.

This last result established that the OJI-NWIS is solvable in polynomial time. It
provided the motivation for this work to study the OJI-NWIJS in more detail and to
find a specialized algorithm for this problem that is more efficient from both a theoret-
ical and practical point of view. Indeed, the algorithm of Groflin and Klinkert (2007)
is weakly polynomial, due to a binary search component. Also, its computation time
is relatively high, precluding its frequent use as a subroutine in good heuristics for
the NWJS problem.

We propose in this paper an algorithm for the OJI-NWIS that is strongly polyno-
mial and highly efficient, so that optimal job insertion can be implemented with rea-
sonable computational effort in constructive and improving heuristics for the NWIJS
problem. The algorithm necessitates some structural developments which seem to be
also of interest for themselves and which are sketched below.

The paper is organized as follows. The next Section describes the NWIJS prob-
lem and gives a classical disjunctive graph formulation. In Section 3, a new compact
formulation of the NWIJS problem is derived that captures two key properties of the
NWIS. In Section 4, the OJI-NWIJS is first formulated in a compact insertion graph.
It is then shown that, for any bound p, the family of all job insertions yielding a
makespan smaller than p is in 1-to-1 correspondence with the stable sets (of pre-
scribed cardinality) of a derived graph HP which turns out to be a comparability

Optimal Job Insertion in the No-Wait Job Shop 3

graph. These results and some additional properties (of antichains in a poset) form
the main ingredients of the OJI-NWJS algorithm. In Section 5, as an application,
a new heuristic for the NWIJS problem based on the OJI-NWIS algorithm is pro-
posed and numerical results are presented showing that the method is competitive.
The Appendix provides a detailed implementation of the algorithm and a complexity
analysis.

We conclude this introduction with some notation and terminology. All graphs
will be directed and the following standard notation will be used. In the graph G =
(V,E), an arc e € E has a rail (node) t(e) and a head h(e). For any disjoint sets M,
NCV,8M,N)={ecE:t(e) €M and h(e) € N}, and for any N CV, §(N) =
8(N,V —N)U 8(V —N,N). If an arc length vector ¢ € RE is given, G will be denoted
by the triplet G = (V,E,c). Sometimes a triplet alone is used to identify a graph,
usually a subgraph of a given graph. In G = (V,E,c), a cycle is called positive if
its length is positive. Finally, some concepts defined for undirected graphs, such as
clique, stable set and comparability graph, are used with directed graphs, with the
meaning that they apply to the corresponding undirected graphs obtained by ignoring
arc orientation.

2 The no-wait job shop
2.1 Formulation, notation and data

The NWIS can be described as follows. Let / be a set of operations i € / and _¢# C 2!
a set of jobs such that ¢ forms a partition of /,i.e. ajob J € _# is a set of operations
{i:i e J} and any operation i € [is in exactly one job J € _¢. We assume that the set
of operations of a job is ordered in a sequence and denote sometimes {i: i € J} as the
ordered set {J1,J2,....,J | }, J, denoting the r-th operation of job J. Two operations i,
j of job J are consecutive if i = J, and j = J,;| for some r, 1 < r < |J|. Furthermore,
let M be a set of machines. Each operation i € I needs a specific machine, say m; € M,
for its execution of duration p; > 0.

In the NWIJS considered here, for each job J € ¢ and any two operations i and
J € J, a fixed time lag 7;; of arbitrary sign is imposed between the starting times
of i and j. Without loss of generality, we may assume that the order of operations
J1,J2,...Jy of job Jis such that 5,5, , > 0,1 <r < |J|. Also, only time lags between
consecutive operations need to be specified since for any i = J; and j = J; with s <1,
Yij = Ys<r<tVy>J,., and ¥;; = —%;. Note that this feature slightly generalizes the no-
wait constraint present in the “classical” No-Wait Job Shop (case where ¥;; = p; for
a pair i, j of consecutive operations of a job) and allows to capture some scheduling
problems arising typically in the process industry, e.g. in the pharmaceutical and
chemical sector.

Another feature of the NWJS considered here is to allow for sequence-dependent
set-up times: if i and j are two operations on a same machine and j follows i, then
a set-up of duration s;; occurs between completion of i and start of j. Also, for each
operation i, an initial set-up of duration sq; can be specified, signifying that the start-
ing time of i is at least sq; (earliest starting time), as well as a final set-up (or tail) of

4 Reinhard Biirgy, Heinz Groflin

duration s;;, meaning that a time of at least s;; lapses between completion time of i
and the overall finish time (makespan).

The NWIJS problem consists in finding starting times for all operations so that
each machine is occupied by at most one operation at a time and the makespan is
minimal. In the three-field notation, the problem could be denoted as J|s;;,#/|Cmax.
where s;; refers to the sequence-dependent setup times, and ¢/ to the fixed time lags.

Figure 1 displays in a Gantt chart an example with four jobs J, K, L, N and five
machines my,...,ms. For simplicity, no set-ups are present. The numerical data can
be read directly in the chart, e.g. for J, the duration of its first operation is 3 and the
time lag between its first and second operation is 4. The example will be used in the
sequel.

m N K1 T (1]

my J o 1] N
my 0 O I

my [LT

ms " A %

Fig. 1 Example with four jobs and five machines.

2.2 A disjunctive graph formulation

The disjunctive graph G = (I7,A,E, & ,d) for the NWJS is constructed as follows.
Each operation i € I, as well as a fictive start operation ¢ and end operation 7 is
represented by a node. ¢ and 7 are of duration O and must occur before, respectively
after, all operations of /. We identify a node with the operation it represents and
denote the node set by IT =1U{o,1}.

The set A of conjunctive arcs consists of the following arcs: (i) for each i € I, an
initial set-up arc (0,i) and a final set-up arc (i, 7) of respective length ds; = s¢; and
dir = pi+sir; (i1) for each job J and each ordered pair of consecutive operations i, j €
J, a pair of arcs (i, j) and (j,i) with respective length d;; := ¥ and d;; := yj; = —dij.

The set E of disjunctive arcs consists of all arcs (i, j) and (j,) between operations
i and j on a same machine and of different jobs. Formally, define for all m € M,
Ln:={i€l:mj=m}and E,, :={(i,j):i,j €L, suchthatie J, jeJ =J#J}.
Then E := UyemEy. The lengths are d;; = p; +s;; for all (i, j) € E.

For any m € M and i, € I, arcs (i, j) and (j,i) form a (unordered) pair of
disjunctive arcs. The family & is the collection of all such pairs. A general element
of &, i.e. a pair of disjunctive arcs, will be denoted by {e,e}.

The following definitions in G = (I7,A,E,&,d) will be useful. Any subset of
disjunctive arcs S C E is called a selection. A selection S is positive acyclic if the
subgraph G(S) = (IT,AUS,d) contains no positive cycle, and is positive cyclic oth-
erwise. A selection S is complete if SN {e,e} # 0 for all {e,e} € &. A selection S is
feasible if it is positive acyclic and complete.

Optimal Job Insertion in the No-Wait Job Shop 5

The NWIS can be formulated as follows: ”Among all feasible selections, find a
selection S minimizing the length of a longest path from ¢ to 7 in G(S) = (IT,AU
S,d)”.

3 A compact formulation of the NWJS

In this section, we will define for any selection S a so-called job-graph F(S) which
can be seen as a compact representation of G(S). Theorem 1 will formalize this notion
and two structural properties will follow as corollaries. Then a disjunctive job-graph
F will be introduced which leads to a compact formulation of the NWJS.

3.1 The job-graph F(S)

Given any selection S C E in the disjunctive graph G = (I*,A,E,&,d) and any dis-
tinct J, K € _¢#, define the subsets

Sik=8SNd8(J,K), Sky=SNo(K,J)

1
Syk) = Sik USky)

and distances
C§K :max{yjlyi—l—d,-j—i—yj’[(l : (i,j) I~ SJK}, (2)

convening c§K = —ooif Syx =0and y;; =0foralli e l.

Observe that | J; gc 7 Syk) 1s a partition of S. Also, a distance c§K (> —oo) is the
length of a longest path in the subgraph (I7,AUS;k,d) from the first operation J; of
J to the first operation K; of K, and similarly cf{ ; > —oo1s the length of a longest path
in (IT,AUSky,d) from K; to J;. For future use, we denote by eyx the arc (i, j) € Sk
being the argument in (2).

The distances from o to J and from J to 7 forall J € ¢ are defined as:

Cc;]:Cf,J:maX{dgi—l—%Jl ZiEJ}, 3)
Crjr = c‘}r =max{y, i+dir:i€J}. 4)

Note that the superscript S can be omitted here since cf; 7 and C§r do not depend on
S; it has been kept as we also refer to the length vector ¢® in the sequel. For future
use, the arcs (o0,i) and (i, 7) for the indexes i being the arguments in (3) and (4) are
denoted ey and ey;.

Let F(S) = (_# 7,BUU(S),c%) be the digraph whose node set # = ¢ U{o,7}
comprises a node for each job J € _Z, and two nodes representing ¢ and 7. We will
identify these nodes with J, o and 7. The arc set B consists of the arcs (o,J) and
(J,7) forall J € _¢#, with length ¢ ; and ¢5_ given by (3) and (4). The arc set U(S)
comprises arcs (J,K) and (K,J) for all distinct J and K € _#, with length ¢ and
¢y, given by (2). F(S) will be called the job-graph with respect to S.

Figure 2 illustrates on the left the subgraph G(S) for the selection S corresponding
to the schedule displayed in Figure 1. For clarity, only the arcs from ¢ and to 7 that
are incident to J have been drawn. The job-graph F(S) is depicted on the right.

6 Reinhard Biirgy, Heinz Groflin

Fig. 2 Subgraph G(S) and F(S).

Theorem 1 (i) G(S) = (IT,AUS,d) contains no positive cycle if and only if F(S) =
(#T,BUU(S),c%) contains no positive cycle.

(ii) Assuming G(S) and F(S) contain no positive cycle, the length of a longest c-1-
path is the same in both graphs. If P with node sequence c,J',...,JP, T is a longest
o-1-path in F(S), the 6-t-path P' in G(S) visiting J',..., JP, entering J' through arc
es1, and, for 1 <r < p, entering J" through e -, and exiting J¥ through ejr; is a
longest o-t-path in G(S).

Proof (i) By a classic result of combinatorial optimization (see for instance Cook et al
(1997), p. 25), G(S) contains no positive cycle if and only if there exists a feasible

potential, i.e. y € R such that Y —¥i > djj forall (i, j) € AUS, and similarly, F(S)
contains no positive cycle if and only if there exists y € R/ such that Vi — Yy > c‘fw

for all (v,w) € BUU(S). We show that G(S) has a feasible potential if and only if
F(S) has a feasible potential.

Lety € R'" be a feasible potential in G(S). Then clearly, forany J € _Z,
y}—yﬁzyij foralli,jeJ. (5)
Define y € R by:

Yo =Yg: Ve =Yrand y; =y} forallJ e 7, (6)

where we recall that J; denotes the first operation of J. Then y is a feasible potential
in F(S). Indeed, let i € J be such that cg,; = doi + ¥.,- By (5), ys = ¥}, = ¥i+ Vi,
Then y; — Yo = Y+ Yy —Yo = Yi— Yo+ Yy = doi+ Yy = oy Hence yy —yo > cg
for all J € ¢ . Similarly, one shows y; —y; > C§T for all J € ¢ . Finally, given any
distinct J and K, leti € J and j € K be such (i, j) € Syx and c“;K =Y,.i+dij+ Yk -
By (5), Yk, =Y+ YiKk and =) =5, —yi. Then yx —y; = yg, =V, =¥; —vi+
Yik, TV = dij+YnitYik = cﬁK. Hence for any feasible potential y' in G(S),
there is a feasible potential y in F(S) given by (6).
Conversely, let y € R” ' be a feasible potential in F (S). Define y' € R! " by:

Yo =Ya. Yy =yrandforallJ € 7: (7)
yljl = ys and y; :y}l +7y,iforallie J—{J;}. (8)

Optimal Job Insertion in the No-Wait Job Shop 7

We show that)’ is a feasible potential in G(S). First, y; — y; > d;; for all (i, j) € A.
Indeed,
y;—yi=d;jif both iand j € J for some J € 7. 9

Also, yl — ¥l > dg; for all i € 1, since y; — yi = y;+ Y10 — Yo = oy + Y0 > (doi +
YiJ,) +Y1,.i = doi, where the last inequality follows from the definition of cfF 7. Sim-
ilarly, y; —y} > dir for all i € I, since, y; —y: = yr — (v + ¥0) = Cp — Vi >
Y1,.i +dir — V5, i = dir. Finally, consider any (i, j) € S. (i,) € Syx for some J, K.
Then Y — v = yk + Y&, j — 07 + ¥1.0) = Ok + Yk — Yni = (Wit dij+vik) +
Yx,.j — Y1,.i = dij. Hence for any feasible potential y in F(S), there is a feasible po-
tential y' in G(S) given by (7)-(8).

Proof of (ii). Assume G(S) and F(S) contain no positive cycle and let wg and
r be the length of a longest o-7-path in G(S) and F(S) respectively. We show
oc = . For all v € I'", let y, be the length of a longest o-v-path in G(S). y' is
a feasible potential in G(S) with y,, = 0 and y, = @¢. Hence y defined by (6) is a
feasible potential in F(S) with ys = 0, y; = y,. This potential yields an upper bound
yz on @f, therefore wg =y, = y; > @p. Similarly, @F > @¢ is shown using a “longest
o-w-path-potential” y in F(S) and deriving from it with (7)-(8) a feasible potential y’
in G(S).

Finally, we prove that P’ constructed from path P as indicated, is a longest o-7-
path in G(S). First note that P’ is fully specified since its entry and exit arcs into and
out of a job are specified, and, if P’ enters a job through, say, arc (i, j) and leaves it
through arc (k,[), the subpath of P’ from j to k in the job is unique. Let y in F(S)
be the "longest o-w-path potential” in F(S) and y" in G(S) be determined from y by
(7)-(8). We prove that d(P") = y/, = @p = ¢ by showing that for any arc (v, w) of P/,
y,, =y = d,,. This is easily shown, using that a) in F(S), y, —y; = ¢>, for each arc
(t,u) of P, b) equalities (9) and c) the choice of the arcs e 1, e;r-1;-, 1 <r < p, and
eyrz. Since the derivation is similar to the feasibility proof for y’ above, the details are
omitted. g

From the theorem follow immediately two key properties of G derived in (Groflin
and Klinkert, 2007) and stated here as a corollary.

Corollary 1 (i) For any positive cycle Z in (I, AUE,d), there exists a positive cycle
Z' with ZZNE C ZNE and Z' visits each job at most once. (ii) For any feasible
selection S, there exists a longest 6-t-path in G(S) visiting each job at most once.

Proof (i) Choose selection S = Z. Since S is positive cyclic, by Theorem 1, F(S)

contains a positive cycle which is expanded (similarly to the expansion of path P into

P’) into a positive cycle Z' with Z’NE C ZNE and Z’ visits each job at most once.
(ii) P’ in Theorem 1 is such a path. O

3.2 A compact disjunctive graph formulation

Given distinct J,K € 7, letSf’JK] COo(J,K)US(K,J),p=1,....,qsk, be all selections

that are positive acyclic and complete on §(J,K)U 8(K,J), i.e. SFJK] N{ee} #0

8 Reinhard Biirgy, Heinz Groflin

for all {e,e} C 6(J,K)U 6(K,J). In other words, selections S‘[DJK], p=1,..,qk,
represent all feasible ways of positioning J and K with respect to each other.

The number gk of these selections is ”small”. If r;, denotes the number of opera-
tions of J on machine m, it is easy to see that gjx < 1+ ,,cp7J, - Tk, - In particular, in
the case of a classical NWJS where r;, < 1forallJ € # andm e M, qjx < |M|+ 1.
We may assume that the Sfj K] ’s are indexed with p =1,, gk in such a way that

Six = Six)» Sks = 0,

SfKDSj]K andSZJCS?(J for 1 < p<qg<gqyk, (10)
UK _ ¢ UK _ ¢4
ST =0, SF —S[J’I’g].

ie. 5! K] places job J "fully before” K, and, with increasing p, K moves ahead of an

[/
operation of J on some machine, until with selection SE,J;], K is fully before J.

Figure 3 illustrates these selections for the two jobs J and K in the example.
The three positionings of J and K are depicted in the Gantt charts (left) and the

. . p
corresponding selections S[JK]

,p = 1,2,3 are shown in the center (sets of dashed
arcs).

Fig. 3 Positionings of J and K (left) and corresponding selections (set of dashed arcs) in G (center) and F
(right).

Proposition 1 Let ¢y and c%.; be the lengths ¢35 and ¢y, defined by (2) for S = S‘[DJK],
p=1,...,q;x. The following holds.
i) cig >l > > W and cky < ok, < .. < cEX,

ii) cj’K—i—ch <Oforp=1,...,qx,

Optimal Job Insertion in the No-Wait Job Shop 9

i) e + ¢k, <0for1 <q<p<q,
iv) ch—l—c;]Q >0forl1 <p<qg<gqjk.
Proof i) Clearly, in view of (10), ¢/, > ¢! for 1 < p < gyx. Suppose cb = ¢!
Then there exist (i, j) € Sb¢" and (k,1) € S, — SPE! such that b, = cPE =y 1+
d,'j +Yik = Vkt di + Y ks therefore Yni—Ynxt dij +Yik, — Yk =Yt d,'j +
Yji = di- But then y; +d;j + Vji + dix = dig + djx > 0, and there is a positive cycle
(through i, j, [and k) contained in (/ T AU Sf’;ql,d), a contradiction to Sf}ﬁ being
positive acyclic.

11) follows from the SfJK] ’s being positive acyclic and iii) results from 1) and i1). To

show iv), observe that for any p < g, S‘[UJK] USEIJK] is positive cyclic in G since {e,e} C

S‘[DJK] USEIHq for e € ST, — S, hence by Theorem 1, {(J,K) ,, (K, J) p, (J,K) 4, (K,J)4}

contains a positive cycle whose arcs, in view of ii) and iii), are (/,K), and (K,J),,,
hence ¢ +c%., > 0. 0

The disjunctive job-graph F = (_# *,B,U, %, c) is now constructed. As in F(S),
the node set 7" = ¢ U{0o,7} consists of all nodes representing a job or a fictive
operation. The conjunctive arc set B comprises the arcs (o,J) and (J, 7) with lengths
csy and cy; defined by (3) and (4) for all J € #. The set U of disjunctive arcs
comprises the following arcs. Between any distinct nodes J,K of _#, two arcs (/,K),
and (K,J), with length ¢/, and ¢k, are introduced for each p = 1,....,gk. In the
example, considering jobs J and K, two arcs (J,K), and (K,J), are introduced for
p = 1,2,3. Each pair is displayed separately in Figure 3, right. The disjunctive job-
graph F' is depicted in Figure 4.

Fig. 4 The disjunctive job-graph F of the example.

For any distinct J,K and p € {1,...,qjk }, denote by [J,K]|, the (unordered) pair
of arcs ((J,K)p, (K,J)p) € U x U. The pair [J,K], represents selection S‘[DJK]. Let P

be the set of all such pairs, i.e.

P={[J,K],:J,Ke #,J#Kand 1< p<q},

10 Reinhard Biirgy, Heinz Groflin

and for any distinct J and K € _Z, let
Dy ={[J,K]p: 1 < p<qk}

The family & (of sets of arc pairs) is the family {D;x : J,K € #,J #K}.

An F-selection is any set T C P of arc pairs and Ur C U denotes the set of all arcs
used by 7. An F- selection T is complete if T N Dy # 0 for all distinctJ, K € ¢Z.T
is positive acyclic if F(T) = (_# *,BUUr,c) contains no positive cycle, and feasible
if it 1s complete and positive acyclic.

Note that, by definition, a complete F-selection T contains at least one pair [J, K],
for any distinct jobs J and K. If additionally T is positive acyclic, i.e. if T is feasible,
then by Proposition 1, T contains exactly one pair [J,K],, for distinct J and K.

Now, for any feasible selection S, distinct J,K € _# and S|k defined by (1),
Sk 1s one of the selections Sf,K], p € {l,.....qik }, therefore to S corresponds an
F-selection which is unique by construction, and is complete and positive acyclic.
Conversely, to a complete and positive acyclic F-selection T corresponds a unique
feasible selection S. (Note that Theorem 1 is used in both directions.)

The NWJS problem can therefore be formulated as the following problem in
the disjunctive job-graph F: ”Among all feasible F-selections, find an F-selection
T minimizing the length of a longest path from o to 7 in the subgraph F(T) =

(/+,BUUT,C)”.

4 Optimal job insertion in the NWJS
4.1 Formulation in the job insertion graph F”/

We studied in (Groflin and Klinkert, 2007) general insertion problems whose so-
called insertion graphs have certain properties (so-called through-connectedness and
bi-connectedness). We showed that the optimal insertion problem in a bi-connected
insertion graph can be solved in polynomial time, and mentioned as an application of
this result the Optimal Job Insertion problem in the NWJS (OJI-NWIJS).

We formulate here the OJI-NWIJS in the framework of our compact formulation
of the NWIJS and solve it with a highly efficient algorithm.

Inserting optimally a job can be thought of as the following problem. Given a
feasible schedule for all other jobs, insert the job in such a way that the resulting
schedule is feasible and its makespan is minimal.

In this section, we will consider the OJI-NWIJS problem for a specific jobJ € _#
and, for brevity, denote ¢ —J by _#~ and g,k by gx.

In the disjunctive job-graph F', a given feasible schedule for all other jobs K €
F# ~ is specified by an F-selection R that is positive acyclic and “complete”, i.e. for
any distinct K,L € ¢, [K,L], C R for some p € {1,.....gxk.}. Let U/ =UNSE(J)
and 2’ be the family of sets D;x for all K € _# ~. One can define the disjunctive
graph F/ = (_#* BUUg,U’, 2’ c) - where the restriction of ¢ to BUUg UU" is
denoted again by c. F/ can be called the insertion graph for J and a F’-selection T

Optimal Job Insertion in the No-Wait Job Shop 11

an insertion of job J. Note that T is a (positive acyclic, complete, feasible) insertion
if and only if T UR is a (positive acyclic, complete, feasible) F'-selection in F =
(Z*,B,U,Z,c).

Assume in the example that K, L and N are scheduled as in Figure 1. The corre-
sponding F-selection R consists of the arc pairs labeled a,b and c in the graph F of
Figure 4. The insertion graph F” is obtained from F by retaining only a,b and c as
arc pairs between K, L and N.

The OJI-NWIJS can then be stated as follows: ”Among all feasible insertions, find
an insertion 7" minimizing the makespan, i.e. the length of a longest path from ¢ to T
in the subgraph (_# ", BUURUUr,c)”.

4.2 The conflict graph HP

In the graph (_# ©,BUUg,c) which contains no positive cycle, let lx; be the length
of a longest K-L-path for any nodes K, L€ ¢, with the convention [k, =0if K =L
and [g; = —o if K # L and there is no K-L-path. Obviously,

Ikr + g <0and g + Iy < lIgy forall K,L,N € /+. (11)
Also, 55 = coy and lj; = cj; where ¢y and ¢, are defined by (3) and (4).

Definition 1 For any p > Is, the conflict graph at p is the graph HP = (WP YP)
with the node set WP and the arc set Y defined by:

forallp=1,...,gkand K € ¢ :

P
WF & 12
Wi © {IGK+c§J+cn<p (12
for all pairs of distinct nodes wk,, wi € WP:
Py

+c7, 4+ lgr > 0or
whowd) e yP o { KT 13
(wk,wL) Pt el ket lor > p (13)

Three observations are in order. First, given any K € _#~, let OCII; be the smallest
p € {1,...,qx} such that coy + ¢/ +Ixz < p, and BY be the largest p € {1,...,qx}
such that I5x + cﬁ 7+ ¢y < p. From Proposition 1 and (12) follows that the node
subset Wy := {wh € WP} rewrites as

e p P - o P p.
WP — {(/) if ok or By does not exist, or if o > Br; (14)

{wh o < p < BP} otherwise.

Second, K and L can be identical in the above definition of the arc set. In fact, if
K =L, (13) is equivalent to:

(whwh)eYP & p<q. (15)

Indeed, by Proposition 1, ¢/ + ¢%; > 0 if and only if p < g. Also, Igx = 0 so that
in (13) ¢l + ¢t + g > 0 for K = L is equivalent to p < g. Moreover, i, +cf, +

12 Reinhard Biirgy, Heinz Groflin

lgc + 1ot > p for K = L implies ¢y + ¢k, > p — (Ikc + lok) > p — loc > 0, hence
CI;K + c?(;> 0.

Finally, in view of (14) and (15), any non-empty WP, K e _# . is (the node set
of) a clique in HP.

Figure 5 displays two conflict graphs HP for p = 28 and 16 in the example.

H?8 6

1 2 3 1 2 3
Wi Wy Wk Wk Wk Wk
K
() L
N

Fig. 5 Two conflict graphs.

Conflict graphs allow to characterize feasible insertions as the following result
holds.

Theorem 2 For any p > lgq, let FP be the family of all feasible insertions T of
makespan ®(T) < p. There is a 1 to 1-correspondence between the feasible insertions

T € #P and the stable sets of size | # | in HP.

Proof Let T € #P. Since T is complete and positive acyclic, given any K € ¢,
[J,K], C T for exactly one p € {1,...,qx}, say px. We show first that wk* € WP.
Indeed, if WiX & WP, coy+ ¥ + g > p or lgk + &5 +cjr > p. In both cases, there
is a o-T-path in (_# ", BUUR UUr,c) of length > p, a contradiction to p > ®(T),
o(T) being the length of a longest o-7-path in (_# *,BUUrUUr,c). Hence to T €
FP corresponds node set 7/ = {wk* : K € #~} CWP of size | # | in HP.

T’ is a stable set in HP Indeed suppose the contrary: for some K # L, (wiX .wit) €
YP ie. c% +c +Ilgr > 0or c —|—c + g+ s > p. In the first case, the positive
cyclic insertion {[J K] pi, [L,J] PL} is contamed in T, contradicting T being positive
acyclic. In the second case, there is a ¢-7-path in (_#*,BUURUUr,c) of length
> p, contradicting p > o(T).

Conversely, let 77 be a stable set of size | # | in HP. T’ picks up at most one
node, say wtX, from each clique WP, K € # ~ and, since Ug, 7 W is a partition of
WP and |T’| =| 7|, T"={wk¥:K e g }. The insertion T = Uke 7 [/, K], is
obviously complete. T is also positive acyclic, otherwise there is a positive cycle in
(7 T,BUURUUr,c) which must go through J, entermg J, through, say, arc (L,J),,
and leaving J through (J,K) ., implying /& 4+ cl'% + g > 0, hence (WX, wit) € YP,
a contradiction to the stability of 7”. Fmally, T has makespan @(7) < p, otherwise
there is a longest 6-7-path in (_# ", BUURUUr,¢) of length > p. This path must visit
at least two jobs, otherwise it is in (_# T BUUg,c) and its length is at most l57 < p.
If J is the first and K the second job on this path, its length is ¢y + c% + g If J is
the last and K the second to last job on the path, its length is I5x + c% +cyr. If J 18
between L and K on the path, its length is C% + cﬁ + lg¢ + 5. The first two cases
imply wtX & WP, contradicting 7" C WP, the third case implies (Wi, wi'*) € YP,
contradicting the stability of 7”. 0

Optimal Job Insertion in the No-Wait Job Shop 13

An immediate consequence of Theorem 2 is the following characterization of all
feasible insertions, regardless of makespan.

Corollary 2 There is a 1 to 1-correspondence between the feasible insertions and
the stable sets of size | # | in graph H = (W,Y) with node set W = {wk : K € ¢,
p=1,....qx} and the arc set Y defined by

forallp=1,...qx, q=1,....,q., Kand L€ 7 :
fK=L: whwl)eYPep<yq
fK#L:(whwl)eYP &+, 41k >0

Proof The result follows immediately from Theorem 2, choosing pg such that pg >
o(T) for any feasible insertion 7. Then H = HP0. O

Theorem 2 can also be expressed as follows.

Corollary 3 For any p > ls1, let (HP) denote the stability number of HP and P
the family of all feasible insertions T of makespan o(T) < p. Either a(HP) < | 7|
and FP =0, or «(HP) = | _# ~| and the maximum size stable sets of HP are in 1-to-1
correspondence with the members of FP.

Proof Since UK€/7W,’() is a partition of WP into |_# | cliques, a(HP) < | #~|.
Also, |T| < a(HP) for any stable set 7. Therefore if T is a stable set of size |_# |,
T| = a(HP). 0

Finding a feasible insertion T of makespan @(7') < p or determining that no such
insertion exists amounts therefore to finding a maximum size stable set in graph H,
a difficult problem in a general graph. Fortunately, HP is a so-called comparability
graph.

Theorem 3 HP = (WP YP) is acyclic and transitively oriented.

Proof a) We show that HP is transitively oriented, i.e. for any triple of distinct nodes
w,w',w' e WP

(w,w') € YP and (W', w") € YP = (w,w") e YP

Assume (w,w') = (wh,wi) € YP and (W' ,w") = (w],w}) € YP. Then (16) or (17)
and (18) or (19) must hold:

e+l +ike >0 (16)
g+l ke +lor > p (17)
A+ +Hln >0 (18)
eyl tlon > p (19)

Assume (16) and (18) hold. Then adding both left and right hand sides and using
cj’L —1—ch <O0and Ig;, + 1y < Ign, yields cle +cjyy +Iky > 0. If (16) and (19) hold,
then adding and using ¢?; +¢7, <0 and lg; + 1z < Iz, yields cf + ¢y, + lge +
lsy > p. If (17) and (18) hold, ch +cyy + ke +1lon > p and if (17) and (19) hold,

14 Reinhard Biirgy, Heinz Groflin

cret+eny+lke+ilon > p+(p— (oL +1c)) > p+(p—lsc) > p. In each case,
e+ +lkn > 0or el + iy, + Ik + lon > p holds, so that (wh,wh) € YP.

b) We prove that HP is acyclic. Since HP is transitively oriented, it suffices to
show that HP contains no w,w’ € WP with both (w,w’) and (w',w) € YP. Assume the
contrary and let w = w¥ and w' = wi. (Wk,wl) € YP implies that (16) or (17) holds
and (w? wk) € YP implies

c?L + cﬁj +1lix > 0or (20)
cip+ ksl +lok > p 2D

Since ¢ +ck; <0and ¢?, 4+ ¢1, <0, if (16) and (20) hold, then Ig;, + Ik > 0.
If (16) and (21) hold, then ls; > lgx + Ik + {1z > p. If (17) and (20) hold, then
lor > lop+ 11k +1kr > p. 1f (17)and (21) hold, then 2151 > I + 1 c + 6k + 1k > 2p.
Therefore in each case (11) or p >[5 1s contradicted. O

4.3 The OJI-NWIJS algorithm

Corollary 3 and Theorem 3 suggest the following general approach for solving the
OJI-NWIJS.

In an initialization step, let T be a stable set in H = HP0, for instance T := {w?(’(:
K € 7}, the insertion placing J after all other jobs. Set p := (7). Then execute
the following loop. Determine a maximum size stable set 7" in HP. If a(HP) :=
IT'| < |_#~|, then stop: T corresponds to an optimal insertion. Else reset T := T’
and p := o(T).

Figure 6 depicts a possible run of this approach in the example. The initialization
step is depicted in i). In H = H?3, T is the stable set (grey nodes) which corresponds
to the insertion placing J after all other jobs, with makespan 16 (see Gantt chart).
i1) illustrates the first pass of the loop. T is updated to a maximum size stable set in
H'S. The corresponding insertion has makespan 15. The next pass is depicted in iii)
leading to an insertion with makespan 13. This is an optimal insertion since a(H'?) <
| 77|, see iv).

At this point, we remark that this general approach yields a polynomial-time al-
gorithm. Indeed, finding a maximum size stable set in a comparability graph can
be found via network flow methods. Also, a (rough) upper bound on the number
of iterations of the loop is [WP0|® = (¥ xc ijK)3, observing that for graphs, say
HPr = (WPr YPr) and HPr+! = (WPr+1 YPr+1) of two consecutive iterations r and
r+1, WPrtt C WPr and if WPr+1 = WPr then YPr C YPr+1,

We propose however a substantially more efficient implementation which relies
on the following two propositions. The first uses the fact that the maximum size stable
sets of a comparability graph form a lattice (see for instance Schrijver (2003), p. 235).
Assume o(HP) =| 7~ |.

Optimal Job Insertion in the No-Wait Job Shop 15

i) 1) 28 . ii) H16 .
Wk Wk Wy Wi Wy

K K
L () L
N N
I%I:I:I C T T I%I:I:I ; T]

m 13 m

T 117 [T 17
. 1171 [0 CT T
L] Z m L[] Z m
[16 | [15 |

i) H15 iv) H13
2 2
WK WK

K K
L L
N O—CO N
EEDK = L1
= -- [

T LT

[
LT &]

I 13 >

Fig. 6 A possible run of the general approach.

Proposition 2 The maximum size stable sets of HP form a lattice P with order <,
meet \/ and join A defined as follows. For any two stable sets T := {wkX : K € 7~}

and T .= {wWif 1K€ 7},

T=T & px<pgforallKe 7~
TVT = (W™ g e gy
: /

Y e S
Proof Clearly, < is a partial order. T \V T’ is stable, otherwise there exist w and w' €
TV T with (w,w') €YP or (W,w) € YP. We may assume w € T—T andw €T’ —T
so that w = wk¥ for some K and pj, < px andw' = wLL for some L # K and p, < p . If
(w,w') = (WZK,WL) € YP, then (WZK,WL) €YP by (WK ,whX) € YP and transitivity,

and if (W', w) = (wa,wK) € YP, then (wi*, whX) € YP, contradicting the stability of

T’ or T. Similarly, one can show that T AT’ is stable. Finally, |TVT'| = |T AT'| =
7| =T|. O

Assume now p’ > p > Ig7 and a(HP) = a(HP') = | Z |, and let £P and P
be the respective lattices of the maximum size stable sets in H? and H)

16 Reinhard Biirgy, Heinz Groflin

Proposition 3 .£” is a sublattice of X"’

Proof By definition of HP = (WP YP), HP' = (WP ,YP) and p < p’, WP C WP, w
w € WP and (w,w') € YP implies (w,w') € YP. Therefore any member T € £ is a
member of .ZP". O

A version of the general approach described previously for solving the OJI-NWJS
is now the following algorithm.

OJI-NW]S algorithm In an initialization step, set 7 := {w# : K € # "} and p :=
o(T). T is the maximal member of .ZP0 and corresponds to the insertion placing
J after all other jobs. Then repeat the following loop: While .£P # 0, determine
the maximal member 7’ of £P and set T := T’ and p := o(T’). At completion, if
T ={wi* : K€ ¢ }, the insertion Uy, 7~ K]py is optimal.

The validity of the algorithm can be asserted as follows. Let 7O, 7M. be
the sequence of sets 7' generated by the algorithm. By Propositions 2 and 3, T <

TG, 5= 1,2,..., and since TG ¢ .Z"’(T(H)), T©) < 761 5o that the number of
generated sets is bounded by } ke ,-gx-

It remains to be shown how an iteration of the while loop is performed, i.e. how
to solve the problem:

Given T maximal in £, let p := o(T).
Determine that .#? = @ or find 7/ maximal in .Z". (22)

Let a node set T C WP be called complete if |TNWg| =1 forall K € ¢~.
Note that T € ZP if and only if T is complete and stable. (22) is solved by a pro-

cedure which successively generates complete sets T',...., 7% in WP, such that for
r=12,...,R,

T" < T" ! and (23)

T <T forall T € £P (24)

and R is the smallest r such that 7" is stable in HP or £ = () can be asserted.
At completion of the procedure, either .#P = 0 or TR is the sought set 7", since
TR is stable and complete, hence TR € £P, and TR is maximal in .Z” by (24).

Postponing temporarily the determination of the initial complete set 7°, we show
how, given a non-stable set 7"~! such that T < T"~! for all T € .ZP, we either
assert 2P = (or construct 7" fullfilling (23) and (24). Assume T'~! = = {wh¥
J 1 C Wp Since 77! is not stable, there exists (Wi, wlt) € YP for some K and
L. Let ' (WkX) = {wl : (WE¥,wP) € YP} be the set of all successors of wkX

Proposition4 TNI(WX) =0 forall T € £

Optimal Job Insertion in the No-Wait Job Shop 17

Proof Suppose there is T € P with T' NI (whX) #£ 0, i.e. letting T' = {w
I} (wﬁK,wL) €YP for some L€ #~. Since T <T" ! forall T € £P, T’
T"~! and therefore p), < px. Hence pK = pk or (wZ ,wiE) € YP. In both cases,

using transitivity in the second, (w?(, wL L) € YP, contradicting the stability of 7.
([l

Hence given a non-stable 77! = = {wi¥ : K € #}, find a node wk* having a
successor in T"~!, and delete all successors of whiX. This deletion does not affect
any T € £P by Proposition 4. If after deletion, some WI’() is empty, then obviously
f P = Q; otherwise determine forall K € # ~ the node wh € W¥ with largest p, say

K ThenT" := {w : K € 7~} satisfies (23) and (24) by Proposition 4.

The initial set 70 C WP can be determined as follows. Assuming 7 = {wiX : K €
7~ }in(22) and p := o(T), determine for all K € _# ~ the largest p < pk, say pk.,
such that wﬁ € WL If for some K, p) does not exists, then .ZP = 0, otherwise T? :=

W - ere is owever a better ¢ oice for See endix
'K . Th h b hoice for T (see Appendix).

In order to determine its computational complexity, the OJI-NWIJS algorithm
needs to be specified in more detail. This is done in the Appendix where a pseudo-
code implementation together with a proof of the following complexity result is pro-
vided.

Theorem 4 The OJI-NWJS algorithm runs in time O(n-max{n’,Y xqx}).

Herein n denotes the number of jobs. We remark that in the “classical” case where
a job has at most one operation on a given machine, this complexity can be related
to the number m of machines. Then Y xc - gk < (n—1)(m+1), and the OJI-NWIJS

algorithm runs in time & (n? - max{n,m}).

5 An optimal job insertion-based heuristic for the NWJS problem

Prior to this work, we devised a job insertion algorithm for the NWIS that is a
straightforward implementation of our general insertion algorithm described in (Grof-
lin and Klinkert, 2007). This implementation, which we refer to as the GK-insertion
algorithm, yielded optimal insertions, however its computation time was relatively
high and limited its use, for instance within a heuristic for the NWJS problem.

It 1s of interest to compare the computation times of the OJI-NWJS algorithm
developed in the previous section and the GK-insertion algorithm. For this purpose,
we measured the average computation time per job insertion in NWJS problems of
size n X m, where the numbers n of jobs and m of machines range from 20 to 50 and 5
to 20. The sample size (number of job insertions) ranges from 31130 for size 20 x 5
to 797 for size 50 x 10.

The average time per job insertion for the GK-insertion algorithm and the OJI-
NWIJS algorithm, as well as the ratio of the first to the second, are recorded in Table

18 Reinhard Biirgy, Heinz Groflin

Problem | Number of Millisec. per Job Insertion | Performance
Size | Job insertions | GK-Ins.Alg. | OJI-NWJS Alg. Ratio
20 x5 31130 3.212 0.359 9

15 x 10 14947 6.690 0.094 71

20 x 10 7392 13.528 0.175 77

30x 10 2677 37.355 0.544 69

50 x 10 797 125.471 2.304 54

15 x 15 5839 17.126 0.081 211

20 x 15 2898 34.507 0.162 213

20 x 20 1565 63.898 0.171 374

Table 1 Performance analysis of the OJI-NWIS algorithm

1, columns 3, 4 and 5. The OJI-NWIS algorithm is many times faster than the GK-
insertion algorithm as the ratios show.

The high performance of the OJI-NWJS algorithm motivated the development of
a heuristic for the NWIJS problem that is based on optimal job insertion. This method
can be described as follows.

A feasible initial selection § is built up by successively inserting optimally a job.
Then, a simple descent local search is used to improve the initial selection. A neighbor
1s generated by extracting and reinserting optimally a job. For each job on a longest
path from o to 7 in graph F(S), one such neighbor is generated. If a neighbor yields
a lower makespan, the current selection is reset to this neighbor. The algorithm stops
if a local optimum is reached. The neighborhood just described will be referred to
as N'. This neighborhood is rather small (of size | _#| at most) and tests showed
that local search using N! reaches a local optimal solution relatively fast. For this
reason, we also examined a larger neighborhood N2. A neighbor in N? is generated by
extracting two jobs and reinserting them successively. One such neighbor is generated
for each ordered pair of jobs. Our second local search algorithm uses neighborhood
N' until a local optimal selection is found and continues then with neighborhood
N?. If a neighbor in N? yields a lower makespan, the current selection is reset to
this neighbor and local search continues again with neighborhood N'. The algorithm
stops if no better neighbor is found in N2. Local search is repeated from various initial
selections generated by random job insertion orders until a given computation time
limit is reached.

The two described algorithms, based on optimal job insertion (using job insertion
algorithm OJI-NWJS) and local search with neighborhoods N'! and N' UN? respec-
tively, will be refered to as OJILS1 and OJILS?2.

6 Computational results

OJILS1 and OJILS2 have been implemented in Java and run on a PC with 2.83 GHz
processor and 2 GB memory. Extensive tests have been performed on the following
well-known benchmark instances for job shop scheduling problems: abz7-9 proposed
by Adams et al (1988), lal1-15/21-40 by Lawrence (1984), swv01-20 by Storer et al
(1992) and ynl-4 by Yamada and Nakano (1992). These instances are interpreted
as “classical” no-wait job shop instances without setup times, 1.e. ¥;; = p; for a pair

Optimal Job Insertion in the No-Wait Job Shop 19

i, j of consecutive operations of a job. For each instance, five independent runs were
performed.

We first compared the algorithms OJILS1 and OJILS2 with each other. Table 2
shows numerical results for a time limit of 1800 seconds per run. The first block (col-
umn 2-3) displays the average results (over five runs) and the second block (column
4-5) the best results (over five runs) achieved by OJILS1 and OJILS2. The instances
are grouped according to size, e.g. the group 20 X 5 contains instances with 20 jobs
and 5 machines. The best values (between OJILS1 and OJILS2) are in boldface and
values known to be optimal are annotated by an asterisk.

avg best avg best
OJILS1 | ONLS2 || ONLSI | OJILS2 OJILS1 | OJILS2 || OJNLSI | OJILS2
(20 x5) (50 x 10)

lall || 1620 | 1619* || 1619* | 1619* swvll || 5694 | 5514 || 5679 | 5456
lal2 || 1429 | 1422 || 1414* | 1414* swvi2 || 5658 | 5537 || 5601 | 5481
lal3 || 1590 | 1584 || 1587 | 1580* swvl3 || 5769 | 5628 || 5701 | 5571
lal4 || 1588 | 1591 || 1578* | 1578* swvl4 || 5519 | 5403 || 5404 | 5382
lal5 || 1673 | 1671* || 1671* | 1671* swvlS || 5493 | 5382 || 5420 | 5351

(15x10) swvl6 || 6108 | 5936 || 6026 | 5857
la21 || 2030%* | 2030* || 2030* | 2030* swvl7 || 5881 | 5729 || 5839 | 5689
la22 || 1852* | 1852* || 1852* | 1852* swvl8 || 5950 | 5758 || 5922 | 5668
la23 || 2021* | 2021* || 2021* | 2021* swvl9 || 6178 | 5965 || 6064 | 5885
la24 || 1972% | 1972* || 1972* | 1972% swv20 || 5859 | 5752 || 5818 | 5624
la25 || 1906%* | 1906* || 1906* | 1906* (15x15)

(20 x 10) la36 || 2685* | 2685* || 2685* | 2685*
la26 || 2531 | 2485 || 2506 | 2477 la37 || 2831* | 2831* || 2831* | 2831*
la27 || 2673 | 2656 || 2649 | 2649 la38 || 2525% | 2525* || 2525* | 2525%
la28 || 2571 | 2552 || 2554 | 2546* la39 || 2660* | 2660* || 2660* | 2660*
la29 || 2362 | 2335 || 2300* | 2300* la40 || 2564* | 2564* || 2564* | 2564*
la30 || 2527 | 2472 || 2452* | 2452%* (20 x 15)

swvOl || 2318* | 2318%* || 2318%* | 2318* abz7 || 1573 | 1572 || 1528 | 1555
swv02 || 2417% | 2417* || 2417%* | 2417* abz8 || 1643 | 1639 || 1569 | 1627
swv03 || 2381* | 2381%* || 2381%* | 2381* abz9 || 1593 | 1561 || 1572 | 1549
swvO4 || 2462% | 2462% || 2462% | 2462* swv06 || 3280 | 3278%* || 3278%* | 3278*
swv05 || 2333* | 2333%* || 2333%* | 2333* swv07 || 3202 | 3188 || 3188 | 3188

(30x 10) swvO8 || 3423 | 3423 || 3423 | 3423
la31 || 3636 | 3583 || 3604 | 3559 swv09 || 3251 | 3246 || 3246 | 3246
la32 || 3982 | 3901 || 3964 | 3863 swvl0 || 3458 | 3455 || 3451 | 3451
la33 || 3605 | 3543 || 3580 | 3510 (20 x 20)
la34 || 3695 | 3602 || 3670 | 3583 ynl || 2401 | 2392 || 2378 | 2366
la35 || 3733 | 3627 || 3716 | 3591 yn2 || 2387 | 2320 || 2293 | 2295

yn3 || 2338 | 2319 || 2288 | 2294
ynd || 2485 | 2463 || 2424 | 2430

Table 2 Numerical results of OJILS1 and OJILS2 (bold: best, *: optimal)

Compared with OJILS]1, the average results (avg) of OJILS2 are better, equal and
worse in 35, 16 and 1 instances, respectively. Over all instances, OJILS2 is 1.0%
better. The best results (best) of OJILS2 are better, equal and worse in 20, 27 and
5 instances, respectively. Altogether, these numbers suggest that OJILS2 should be
given preference over OJILS1.

We then compared the results of OJILS2 with the best current benchmarks for the
NWIS to our knowledge, namely the results of Bozejko and Makuchowski (2009),
van den Broek (2009) and Zhu et al (2009). Before presenting this comparison, we
briefly sketch the approaches taken by these authors.

20 Reinhard Biirgy, Heinz Groflin

Bozejko and Makuchowski (BM) apply a hybrid tabu search algorithm. A feasi-
ble schedule is built by successively inserting each job as early as possible without
changing the starting times of already scheduled jobs. This procedure is repeated with
various job insertion orders generated within a tabu search.

Zhu et al. (Zhu) propose a complete local search with limited memory based on a
so-called shift timetabling procedure. This procedure builds a feasible schedule again
by successively inserting each job without changing the starting times of already
scheduled jobs. A job is either placed as early as possible or after all other jobs.

Van den Broek (vdB) proposes a heuristic which successively inserts optimally a
job. He formulates each job insertion as a mixed integer linear programming problem
and solves it with CPLEX. He also develops an exact approach based on branch &
bound, using his heuristic solution as an initial upper bound. The branch & bound
method solves smaller instances within minutes and is also used for larger instances
as a heuristic providing good solutions within a given run-time.

Table 3 displays for each instance average and best results over five runs (denoted
below avg and best) achieved by OJILS2, together with benchmarks of BM, Zhu and
vdB. We tried to use the same computation time as reported by these authors. For
this reason, Table 3 has been divided into three blocks. The first block (column 2-4)
reports OJILS?2 results (avgl) and results of BM with their run-time 7'1. The second
block of four columns compares OJILS2 results (avg2), results of vdB and average
results of Zhu over 20 runs with their run-time 72. The third block of four columns
shows results with high run-times. Column avg3 and best report OJILS2 average and
best results after a computation time of 3600 seconds. Column BM2 shows results
of Bozejko and Makuchowski with so-called “unlimited” run-time and column Zhu2
contains the best results over 20 runs of Zhu et al. The last column opt displays
optimal values for some instances taken from van den Broek (2009). The best values
of each block are put in boldface and optimal values are annotated by an asterisk.

Results avgl are in 50 (out of 52) instances better than BM and, on average over
all instances, they are 3.7% better. Results avg2 systematically dominate Zhu and
are better than vdB in 29 out of 35 instances. vdB reports a better value only for
one instance (lal4). On average, avg?2 is 4.0% and 5.4% better than vdB and Zhu,
respectively. Results avg3 are slightly better than BM?2. Indeed, out of 52 instances,
avg3 is better, equal and worse in respectively 28, 16 and 8 instances. On average,
avg3 i1s 0.3% better than BM2. Finally, observing the values best, in 25 out of 26
instances with known optimum, OJILS2 reached the optimum, and in the remaining
26 instances with unknown optimum, it improved the best benchmark 19 times and
matched it two times.

Altogether, the algorithm OJILS2 appears competitive when compared to the best
current approaches.

7 Concluding remarks

We provided a new compact formulation of the No-Wait Job Shop problem (NWIS)
and formulated in that framework the Optimal Job Insertion problem (OJI-NWIS).
We characterized all feasible insertions of makespan less than p (for any given bound

Optimal Job Insertion in the No-Wait Job Shop 21

instance || avgl | BM | TI avg2 | vdB | Zhu | T2 avg3 | best | BM2 | Zhu2 || opt
(20x 5)
lall]|1646 | 1704 | 11 1625 | 1654 | 1716 | 447 || 1619* | 1619* | 1621 | 1671 || 1619
lal2 || 1480 | 1500 | 10 || 1441 | 1451 | 1506 | 498 || 1421 |1414* | 1434 | 1452 || 1414
lal3(| 1614 | 1696 | 17 || 1592 | 1595 | 1661 | 640 || 1582 |1580* | 1580* | 1624 || 1580
lal4 (| 1670 | 1722 10 1617 | 1578* | 1721 | 465 || 1578* | 1578* | 1610 | 1691 || 1578
lal5 || 1717 [1747 | 7 1680 | 1686 [1749 | 484 || 1671* | 1671* | 1686 | 1694 || 1671
(15x10)
la21 ({2043 | 2191
la22 || 1891 | 1922
la23 (| 2071 | 2126
la24 || 2006 | 2132
la25 || 1911 | 2020
(20 10)
la26 || 2580 | 2738 | 14 || 2495 | 2598 | 2707 | 812 || 2478 | 2477 | 2506 | 2553 || 2467
1a27 || 2728 [2794 | 27 || 2666 | 2755 | 2838 | 834 || 2638 |2611%* | 2675 | 2747 || 2611
1a28 (| 2662 | 2741 | 24 || 2557 | 2722 |2752| 810 || 2551 |2546* | 2552 | 2624 || 2546
1a29 (| 2425 {2596 | 12 || 2340 | 2427 |2539| 778 || 2320 |2300* | 2300* | 2489 || 2300
la30]| 2642|2791 | 12 2507 | 2572 [2743 | 822 || 2452% | 2452%* | 2452% | 2665 || 2452
swvOl || 2338 | 2424 | 11 || 2318% | 2344 | 2389 | 641 ||2318*|2318* |2318* | 2328 || 2318
swv02 || 2433 (2484 | 16 || 2417* | 2430 | 2493 | 777 || 2417* | 2417* | 2417* | 2418 || 2417
swv03 || 2411|2404 | 17 || 2381% | 2517 |2483| 757 || 2381* | 2381%* | 2381* | 2415 || 2381
swv04 || 2509 | 2545 | 23 || 2462% | 2635 | 2562 | 675 || 2462% | 2462* | 2462* | 2542 || 2462
swv05 || 2365 | 2489 | 22 || 2333% | 2555 |2495| 712 || 2333* | 2333* | 2333* | 2333* || 2333
(30 x 10)
la31| 3627 | 3869 | 151 || 3578 | 3708 | 3884|2588 || 3578 | 3556 | 3498 | 3745 -
[a32 (13990 [4045 | 176 || 3873 | 4337 | 4259|2698 || 3849 | 3776 | 3882 | 4028 -
la33 || 3644 | 3751 | 120 || 3524 | 3976 | 3842|2587 || 3521 | 3501 | 3454 | 3749 -
la34 || 3695 | 3936 | 102 || 3601 | 4161 | 3932|2754 || 3589 | 3568 | 3659 | 3824 -
1a35(| 3750 | 3918 | 120 || 3627 | 3945 | 3984|2615 || 3627 | 3591 | 3552 | 3760 -

2030% | 2030* | 2104 | 306 || 2030* | 2030* | 2030* | 2048 || 2030
1852% | 1852* | 1912 | 354 || 1852* | 1852* | 1852* | 1887 || 1852
2021% [2021* | 2098 | 307 || 2021%* | 2021%* | 2021* | 2032 || 2021
1972% | 1972% | 2048 | 422 || 1972% | 1972% | 1972% | 2015 || 1972
1906* | 1906* | 1971 | 297 || 1906* | 1906* | 1906* | 1917 || 1906

AN L L L

(50 x 10)
swoll || 5514|5634 [1736 || - - - | - || 5512 | 5456 | 5564 | - -
swri2 || 5519|5465 | 2212 (| - - - | - || 5518 | 5481 | 5441 | - -
swrl3 || 5621|5807 (2360 - - - | - || 5606 | 5571 | 5628 | - -
swvl4 || 5417 | 5458 | 1602 || - - - | - || 5388 | 5369 | 5401 | - -
swrl5 || 5372|5619 (2076 || - - - | - || 5366 | 5334 | 5435 | - -
swvl6 || 5943 | 6233 | 1348 | - - - | - || 5886 | 5779 | 5843 | - -
swrl7 || 572959001760 || - - - | - || 5689 | 5646 | 5780 | - -
swyl8 || 5785|5931 | 1430| - - - | - || 5731 | 5668 | 5785 | - -
swr19 || 5967 | 6283 | 1481 - - - | - || 5956 | 5885 | 5997 | - -
swr20 || 5752|5945 | 1843 || - - - | - || 5721 | 5620 | 5724 | - -

(15 x 15)

la36 || 2757 | 2893 | 9 || 2685% | 2692 | 2778 | 535 || 2685% | 2685* | 2685* | 2685* || 2685
la37(|2931 | 3107 | 7 || 2831% | 2977 |3019| 505 || 2831*|2831* | 2831* | 2962 || 2831
[a38(| 2593|2706 | 6 || 2525% | 2571 |2676| 497 || 2525% | 2525% | 2525% | 2617 || 2525
la39 (12687 | 2725 | 9 || 2660% | 2706 |2776| 558 || 2660%* | 2660* | 2687 | 2697 || 2660
[a40 || 2573 | 2804 | 12 || 2564* | 2709 | 2709 | 283 || 2564* | 2564* | 2580 | 2594 || 2564

(20 x 15)
abz7 || 1643 1775 | 20 - - -] - [1559 | 1528 | 1592 | - -
abz8 || 1686 | 1727 51 - - - | - || 1628 | 1606 | 1642 | - -

abz9 || 1619 | 1705 | 52 - - - - 1561 | 1549 | 1562 - -
swv06 || 3312 | 3463 | 29 || 3278* | 3449 | 3457 | 1136 || 3278* | 3278* | 3290 | 3376 || 3278
swv07 || 3225|3299 | 32 || 3188 | 3357 | 3321|1176 3188 | 3188 | 3188 | 3271 -
swv08 || 3428 | 3567 | 29 || 3423 | 3949 | 3634 | 1149 || 3423 | 3423 | 3423 | 3530 -
swv09 || 3293 | 3439 | 39 || 3246 | 3355 [3362|1053 || 3246 | 3246 | 3270 | 3307 -
swvl0 || 3511 | 3561 | 23 || 3455 | 3790 3564 | 1142 || 3451 | 3451 | 3462 | 3488 -

(20 x 20)
ynl || 2461|2630 | 68 - - - | - || 2374 | 2366 | 2360 | - -
yn2 || 2457|2647 | 41 - - - | - || 2317|2295 | 2370 | - -
yn3||2397 (2465 | 134 || - - - | - || 2299 | 2288 | 2320 | - -
yn4 || 2542|2630 | 53 - - -] - || 2443 | 2402 | 2513 | - -

Table 3 Comparison of OJILS?2 results avgl, avg2, avg3 and best with benchmarks BM, vdB, Zhu, BM2
and Zhu?2 (bold: best, *: optimal)

22 Reinhard Biirgy, Heinz Groflin

p) as all stable sets of prescribed cardinality in an associated comparability graph and
presented a strongly polynomial and efficient algorithm for the OJI-NWJS.

The new compact formulation of the NWJS is certainly in part accountable for
the high efficiency of the proposed OJI-NWIS algorithm. We believe it also to be
valuable in future solution approaches for the NWIJS. Preliminary tests on (smaller)
NWIS instances formulated as ILP’s (based on the compact formulation) and com-
puted with commercial solvers support this belief.

The high efficiency of the OJI-NWIJS algorithm allowed it to be implemented in
a simple local search scheme, as described in Section 5. The achieved improvements
in many benchmarks provide support for this approach, and suggest that similar ap-
proaches in other job shop problems using optimal or ’near-optimal” job insertion
might be worth studying.

8 Appendix

We provide an implementation of the OJI-NWIJS algorithm, describe some algorith-
mic details necessary to achieve running time &'(n- max{n’,Y xqx}) and prove this
complexity.

Before proceeding, we observe that, considering the sequence of all complete sets
generated in the OJI-NWIJS algorithm, for any set T in the sequence, the next set 7"
is such that 77 < T. Therefore finding 77 in WP given T = {wkX : K € #~} can be
restricted to WP |T, the node set WP where for each K € _# ~, all nodes w§ € WI‘? with
p > px are deleted from W7, obtaining WI? |T. We now sketch our implementation.
A pseudo-code with line numbers is provided in Listing 1, to which we will refer in
the text.

In an initialization step (lines 1 to 3), the all-pairs longest paths in graph (_# *, BU
Ug,c) are computed, e.g. with the algorithm of Floyd and Warshall, and T is set as
T :={wlf : K € ¢}, the insertion placing J after all other jobs. Then, as long as
optimality of T is not established, the while loop (lines 6 to 38) is executed.

A generic loop iteration starts with 7 := {w{* : K € #~} maximal in £, cal-
culates its makespan @(7'), resets p to @(7T), and determines an initial complete set
T' C WP with T" < T. T’ is then successively updated on the basis of Proposition
4 until 7’ is maximal in .£P or .£P = 0. This is achieved by repeatedly applying a
scanning operation to an unscanned node w of T/, which in effect deletes all succes-
sor nodes of w from WP|T’. If in the process for some K, ng |T” becomes empty,
ZP = 0, otherwise T’ is updated. Eventually, either P = @ or T’ is such that its
nodes have been scanned without changing 7', hence T” is stable and therefore max-
imal in ZP.

A straightforward implementation of the scanning operation does not yield how-
ever the claimed computational complexity, as a node might be scanned more than
once. Fortunately, with the calculation of the makespan @(T), either .£P = 0 is de-
tected or an initial set 7/ < T can be determined whose only nodes to be scanned are
in T —T (lines 6 to 24).

Proposition 5 Let T := {wi¥ : K € #Z~} I' := max{loxk + &5 : K € #~} and
?:=max{c’8 +ix.: K€ #}.

Optimal Job Insertion in the No-Wait Job Shop 23

i) G)(T) = max {lm:; CoJ T Cjt; CoJ +12; 1 +cyzs /! ‘i‘lz}
i) If p := &(T) = max{lgr;coy +Cyricoy + 12}, then LP = 0.
Proof 1) A longest oT-path either avoids J, or goes through J, visiting only one job
(J), or more than one job, with J being first or last, or between two jobs on the path.
i) If o(T) = lsr or cgy +cyg, T is optimal since both I5; and cgy + cj; are

lower bounds on (7). If o(T) = cgy+ 1> = coy —|—c§,’§ + g forsome K € ¢, by
Proposition 1 and (12), wk ¢ WP for all p € {1,..., px }, hence -ZP = 0. 0

Assume now p := @(T) > max{lsr;coy +Cyricoy + 12}, therefore p = max{I' +
cye; IV 1%}, and let

Ihi={Ke g ilog+E=1"}, 1 :={wW¥:Ke g}y CT
Ir={Ke 7 P 4lgc =1}, Th:={whk: K€ #*}CT.

Lemma 1 Let T := {wkX : K € ¢~ }. Either (i) or (ii) holds:

)T EWP:thenT —WP =T and for allve TONWP =T — T, v has no successor
in HP|T.

ii) T CWP: then foranyv e T, (vyw) €eYP|IT <veTandw e Th.

Proof a) We show first that
for any wi* € TNWP, there is no (wiX,wl) € YP with p < py. (25)

Assume the contrary. By (15), K # L and by (13)

PK p
4+cr,+ 1k > 0or
PK YP o €k T €Ly 26

By Proposition 1, CZ] < c%. If the first inequality n (26) holds, c x+ c Ltlx >
0, contradicting the stability of 7 in H. Hence c +c + g + lGL > p. But then
42> c +c JtHlkctlsr>p,a contradiction top = max{ 1"+ cjp 1! +lz}
b) Assume now T ¢ WP. We show that p = 1"+ ¢y, T —WP =T; and TNWP is
stable in HP, thus, in view of (25), proving i) of the lemma statement.
Let wkX € T —WP. Since wiX ¢ WP, by (12)

Ccl‘i'cgjlg‘i'llﬂ' > por ZGK‘i'C;g‘i‘CJT > p.
Since we assume p > ¢y + (2, the second inequality must hold, hence
1" +cpe > log + k8 +cie > p = max{l' +cjg, 1" + 17}, (27)

and therefore equality must hold in the inequalities of (27), so that p = I' +¢;; and
N4 cjr = l(;K‘i—CKJ‘i—CjT, ie. K e /1 and w K e T. Hence T — WP C T;. Also
T —WP D T holds. Indeed, suppose wiX € Ty ﬂWp Since wiX € WP, by (12)

CGJ+C§I’§+IKT < p and lo—K—kc%#—ch <p.

Since wi* €T, K€ 7 ! hence the second inequality yields 1! + cj; = l5x + ! K+
cjr < p, contradicting p =1 'y eye.

24 Reinhard Biirgy, Heinz Groflin

Finally, we show that 7 N"WP is stable in HP. Let wt* and wi* € TNWP, K 75 L,
and suppose (wf}K,wL) € YP. By (13) and s1nce T is stable in H lor + s+ %K +
Ikz > p. Since Wit & Ty, lor + s < I', and /% + Ige < 1% so that [! +12 > p,
contradiction to p = max{ I' 4 ¢y; l1 lz}

¢) Assume T C WP. We show that p = [! +/? and for any v,w € T, (v,w) € YP|T
if and only if v € T, and w € T, thus, in view of (25), proving ii) of the lemma
statement.

First, since T C WP, wkX € WP forall K € 7, hence by (12), 5k —I—c% +cjr <
p forall K € ¢, and therefore I'+cjr < p sothat p = max{ll +eyp ! +12} =
I'+12.

Next, 71 N T> = 0. Indeed, suppose WK € T'NT,. Then lGK—l—c% =1 and c +
Ixr = I?, hence lok + R + K + ke = 11+ 17 = p. But k¥ + /K <0, so that ch+
lkr > p,a contradictlon to lm <p.

Moreover, let v = wﬁ’(, w=wit If wiX € Ty and wi'* € Ty, then /& + g = 1% and
lor +clh =11, hence cfK + Ik, +zGL+cPL =12 +1' = p, and by (13), (WRX, wlit) €
YP. Conversely, suppose (wﬁ’(,wL Ly € YP. Then by (13), and since T is stable in H,
cJK—i—lKT—i—lGL—i—c >p — 2+ ' Since also c —i—lK»; < [? and lGLJrch <,
equality must hold in these two inequalities, hence wiX € Tp and wi* € Ty. a

The initial set 7’ (denoted 7° in Section 4.3) is determined in lines 13 to 25 based
on Lemma 1. All nodes of 7T} can be deleted, since either T —WP =T; or T C WP and
all nodes of 7 are successors of all nodes of 7>. Also none of the remaining nodes of
T — T have successors in WP |T. Then either for some K € _# L WI’() |T after deletion

of T} becomes empty and ZP =0, or wik ' € WP|T forall K € _#!: these nodes are
appended to 7 — T} to form the 1n1t1a1 T’. Also, only these nodes need to be scanned.
The following complexity result can now be proven.

Proposition 6 The OJI-NWJS algorithm runs in time O(n-max{n, ¥ xqx}).

Proof 1) Initial all-pairs longest paths-computation can be done in &'(n?).

ii) For a given T, the computation effort for calculating the makespan and ini-
tializing 7’ and . (lines 6 to 24) is O'(n). Also, at most ¥ gqx sets T are generated
overall. Therefore the total effort spent in makespan and initialization of 7’ and . is
O (n¥Lkqxk).

i11) We estimate the overall effort spent in the scanning phase by estimating the
number of iterations of the inner while loop of the scanning phase, i.e. the number

of tests (wK JWh) € Yp (line 30). When scanning wkX and considering a given L €

I~ —K, let test (wK ,wh) € YP be called a first test if p = p} and an additional test
if p < p;. Now, the number of first tests in the scan of anode is | #~ — K| =n—2.
Also, since each node is scanned at most once, the number of scanned nodes is at
most Y xqx. Therefore the overall number of first tests is at most (n —)ZKqK The

number of additional tests is less than) x gk since each additional test (w Eowh)eyP
is performed after p has been decremented by 1. Therefore the overall number of tests
is less than (n — 1)Y gk O

Optimal Job Insertion in the No-Wait Job Shop

Listing 1 OJI-NWIJS algorithm

v //Initialization

» Compute Ilg; for all K,L€/+; optimal := false;
s for_all Kc ¢~ do pg:=gk; end_for

4

s while optimal = false do

o //Calculate makespan p of T:={w*:Ke 7 }.
;0! =max{lox +ciN Ke 77},

s Jli={Ke # e+ =1},

o P =max{ci¥+ix.: K€ 77 };

v pi=max{ler;cos+ il +esrreos 151N+ 12}

2 //Initialize set T' and set . of nodes to be scanned.
3 if p=max{lsr;co;+cricos+1%} then

14 optimal := true; return;

15 end_if

w for_all Ke #~ do py:=pg; end_for

17 T/Z:{WIP(KIKEj_};

18 5”::(2);
w for_all Ke ¢! do
/_

20 if p/KZI or CG]+C§I[§ l—l—lKTZp then
21 optimal := true; return;

/
» else pi:=pk—1; y::YUW‘ZK;
23 end_if

24 end_for
25

2 // Scanning Phase
/
27 while “NT'#0, get a node, say szEYﬂT’ and scan it:

28 for_all Lc 7 —K do

29 p:zp/L; /

0 while (WX, w?)€YP do

31 p!zp—l;

» if wfgéWp then optimal := true; return; end_if
3 end_while

34 if p<p] then p):=p; Y::YUwflL; end_if

35 end_for

36 y::y_WI;(IK;

37 end_while

s for_all Ke 7~ do pkx:=pg; end_for

» end_while

w /) T:={wX:Ke 77} with makespan p

s // corresponds to an optimal insertion.

26 Reinhard Biirgy, Heinz Groflin

Acknowledgements We thank the anonymous referees for their constructive remarks which led to several
improvements in the exposition of the paper.

References

Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop
scheduling. Management Science 34(3):391-401

Bozejko W, Makuchowski M (2009) A fast tabu search algorithm for the no-wait job
shop problem. Computers & Industrial Engineering 56:1502-1509

van den Broek J (2009) MIP-based approaches for complex planning problems. PhD
thesis, Technische Universiteit Eindhoven

Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A (1997) Combinatorial
Optimization. Wiley-Interscience

Groflin H, Klinkert A (2007) Feasible insertions in job shop scheduling, short cycles
and stable sets. European Journal of Operations Research 177:763-785

Groflin H, Klinkert A (2009) A new neighborhood and tabu search for the blocking
job shop. Discrete Applied Mathematics 157:3643-3655

Kis T (2001) Insertion techniques for job shop scheduling. Phd thesis, Ecole Poly-
technique Fédérale de Lausanne

Kis T, Hertz A (2003) A lower bound for the job insertion problem. Discrete Applied
Mathematics 128:395-419

Lawrence S (1984) Supplement to resource constrained project scheduling: an exper-
imental investigation of heuristic scheduling techniques. GSIA, Carnegie Mellon
University, Pittsburgh, PA

Schrijver A (2003) Combinatorial optimization, polyhedra and efficiency. Springer

Schuster C (2006) No-wait job shop scheduling: tabu search and complexity of sub-
problems. Mathematical Methods of Operations Research 63(3):473-491

Storer RH, Wu SD, Vaccari R (1992) New search spaces for sequencing problems
with application to job shop scheduling. Management Science 38(10):1495-1509

Werner F, Winkler A (1995) Insertion techniques for the heuristic solution of the job
shop problem. Discrete Applied Mathematics 58(2):191-211

Yamada T, Nakano R (1992) A genetic algorithm applicable to large-scale job-shop
problems. Parallel problem solving from nature 2:281-290

Zhu J, Li X, Wang Q (2009) Complete local search with limited memory algorithm
for no-wait job shops to minimize makespan. European Journal of Operational
Research 198(2):378-386

