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This paper addresses the problem of minimizing the number of moves to unload a set of boxes off a
gravity conveyor by a forklift. If the input data is known in advance, the problem is efficiently solvable
with a dynamic programming approach. However, this method is rarely applicable in practice for two
reasons. First, the problem generally occurs in a real-time environment where the input data is revealed
over time. Second, computing devices are in most cases not available in forklifts or gravity conveyors for
decision-making. Online approaches that can easily be applied by human operators are therefore sought
in practice.

With this in mind, we first propose some intuitive approaches and analyze their performance through
an extensive experimental study. The results show that these approaches are quite inefficient as they are
on average between 14.7% and 59.3% above the optimum. A less intuitive but still simple approach is
then designed that consistently produces good results with an average gap of 6.1% to the optimum.
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1. Introduction

The problem addressed in this paper was introduced by Baptiste, Rebaine, and Brika (2011), and
was met in a company that produces household appliances. It can be described as follows. Different
versions of a product are assembled on assembly lines, and each product is packed in a standardized
box after a quality inspection. A single gravity conveyor line transports these boxes to an unloading
zone where a human operator moves them with a forklift to their destination, which is for example
a semi-trailer or a truck. The conveyor consists of three areas, namely an accessible area where the
operator can pick boxes, a visible area where the operator can see but not pick the boxes, and an
invisible area where the boxes are hidden. Each box has a predefined destination, which is usually
indicated by a label pasted on the box. For simplicity, we assign to each destination a distinct
color, and depict each box with the color of its destination. The forklift cannot pick more than F
boxes at a time, and these boxes must be of the same color and contiguous on the conveyor. In the
example of Figure 1, the accessible area contains nine boxes and the visible area three boxes, there
are three destinations, and the forklift can pick at most three boxes at a time. As a contiguous set
of boxes is unloaded, a gap is momentarily formed. It is immediately filled by the boxes to its right
positioned at a higher height and slide down, thus leading to new boxes entering the accessible and
visible areas.

In practice (at least at our industrial partner), a human dispatcher decides which boxes the
forklift driver has to move next. Hence, he determines the sequence in which the boxes are picked.
These decisions have a big impact on the number of moves needed to unload all the boxes. We
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Figure 1. Unloading boxes off a gravity conveyor.

aim at developing strategies that unload all boxes in as few moves as possible. If the travel times
between the gravity conveyor and all destinations are the same, then the total travel time is also
minimized when minimizing the total number of moves. In practice, the travel times between the
gravity conveyor and the different destinations are never exactly the same, but the differences are
mostly negligible when compared to the total time needed for one move, which is the sum of the
loading, unloading, and travel times.

Clearly, the sequence in which the boxes are placed on the gravity conveyor has a significant
influence on the minimum number of moves needed to unload them. Unfortunately, this sequence
must be taken as given, as it is an outcome of decisions made by the production and quality control
departments, which generally do not consider the consequences on the gravity conveyor unloading
problem.

Some decision problems arising before and after unloading boxes off a conveyor are well studied.
There exists for example a large body of research on assembly line sequencing problems (see e.g.,
Sumichrast and Russell 1990; Becker and Scholl 2006), on quality inspection sequencing problems
(see e.g., Raz and Thomas 1983; Ding, Greenberg, and Matsuo 1998), and on truck loading problems
(see e.g., Morabito, Morales, and Widmer 2000; Lodi, Martello, and Vigo 2002). There is also
a considerable amount of papers addressing the retrieval of specific items from conveyors. For
example, Bozma and Kalalıoğlu (2012) consider a problem where a set of robots pick items from
a moving conveyor band. Bartholdi and Platzman (1986) developed heuristic retrieval strategies
for picking a set of items from a carousel conveyor, and Ghosh and Wells (1992) proposed optimal
retrieval strategies for some of these problems.

In contrast, conveyor unloading problems received little attention in the literature. Baptiste et al.
(2013) studied an offline version of our gravity conveyor unloading problem, where the complete
sequence of the boxes is assumed to be known in advance, i.e., there is no invisible area. They
developed an efficient dynamic programming based approach that finds an optimal solution in
O(n3A logF ) time, where n is the total number of boxes, A the size of the accessible area, and
F the forklift capacity. However, this approach cannot be applied in practice since only a part of
the boxes is visible, the other boxes being hidden. More precisely, the boxes arrive at the gravity
conveyor in a continuous fashion, and their order is not known in advance. This is due to various
unknowns inherent to the quality inspection process. As a consequence, online approaches are
sought in practice. Moreover, the forklifts and the gravity conveyor typically possess no computing
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Figure 2. An example with 30 boxes and 4 different destinations indicated with the colors white, light grey, dark grey and
black. The numbers below the boxes indicate the position of the boxes.

device. While this might change in the future, there is currently some reluctance in practice to
install hardware and develop software to assist the decision-making process. As a by-product, the
approach we propose can be applied by human operators without using any computing device.

To the best of our knowledge, the only contribution tackling the online version of our problem is
(Baptiste, Rebaine, and Brika 2012). They propose three simple heuristics based on intuitive rules
for selecting the next boxes to be moved. They observe that the obtained results are sometimes
more than 20% above the optimal value, and conclude that rules based on common sense may have
an unsatisfactory performance. These results were the motivation and the starting point for the
approaches developed in the present study.

This paper is organized as follows. Section 2 gives a formal description of the problem. Section 3
addresses valid, dominant, and optimal moves. Section 4 proposes and evaluates the performance
of an online algorithm. Based on the obtained results, a variant of the online algorithm using an
improved rule is developed and evaluated in Section 5. Concluding remarks are given in Section 6.

2. Problem formulation

Consider a gravity conveyor with three areas, namely an accessible area containing the first A boxes,
a visible area preceding the accessible area and containing the next V boxes, and an invisible area
of boxes preceding the visible area. The forklift has a fork of size F .

Let ci be the color of the box at position i, and let C = (c1, . . . , c|C|) be the sequence of colors
on the conveyor. We identify a box by its position in C, which means that box i has color ci. We
say that the positions are increasing from left to right, and we denote an instance by (C,A, V, F ).
Figure 2 illustrates the example (C, 10, 3, F ) with C = (1, 2, 3, 1, 4, 3, 1, 2, 2, 4, 1, 1, 2, 3, 3, 1, 1,
2, 1, 2, 3, 1, 1, 2, 4, 2, 2, 1, 4, 2), representing color 1, 2, 3, and 4 by white, light grey, dark grey,
and black, respectively. We will use this example in the sequel of the paper with a fork size F = 3.

The removal of a group of contiguous boxes is called a move. Valid moves are defined as follows.

Definition 1. Given instance (C,A, V, F ), a move is specified by a pair (p, `), where p is the
position of the leftmost removed box and ` is the number of removed boxes. A move (p, `) is valid
if

a) p+ `− 1 ≤ min{|C|, A},
b) cp = cp+i for all i ∈ {0, . . . , `− 1}, and
c) ` ≤ F .

Note that the validity conditions in the above definition state that a) the removed boxes must
exist and be in the accessible area, b) the removed boxes must be all of the same color, and c)
the number of removed boxes cannot be larger than F . We denote by C � (p, `) the sequence
of colors that results from a valid move (p, `) applied to C = (c1, . . . , c|C|), i.e., C � (p, `) =
(c1, . . . , cp−1, cp+`, . . . , c|C|).

A strategy for an instance (C,A, V, F ) consists of a sequence of valid moves that clear the
conveyor. The objective is to determine a strategy that generates a minimum number of moves.

An offline version of the problem is studied in (Baptiste et al. 2013) where it is assumed that all
the boxes are visible from the beginning. They developed a polynomial time algorithm that finds
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an optimal strategy for this problem. Denote by OPT (C,A, F ) the optimal value for (C,A, V, F ).
Clearly, OPT (C,A, F ) does not depend on V and is also an optimal value for the online version
of the problem.

3. Valid, dominant, and optimal moves

Let Σ(C,A, F ) be the set of valid moves for instance (C,A, V, F ). The number |Σ(C,A, F )| of
valid moves does not depend on V , and is bounded by F · max{|C|, A}. Indeed, each box p ∈
{1, . . . ,max{|C|, A}} can be the leftmost removed box of a group of size ` ∈ {1, . . . ,min{|C| − p+
1, F}}. Among all moves in Σ(C,A, F ), we aim at selecting a move (p∗, `∗) that minimizes the total
number of moves needed to remove all the remaining boxes. In other words, (p∗, `∗) is a move in
Σ(C,A, F ) such that

OPT (C � (p∗, `∗), A, F ) = min{OPT (C � (p, `), A, F ) : (p, `) ∈ Σ(C,A, F )}.

Note that OPT (C,A, F ) = 1 +OPT (C � (p∗, `∗), A, F ). This justifies the following definition.

Definition 2. A move (p, `) ∈ Σ(C,A, F ) is optimal if OPT (C�(p, l), A, F ) = OPT (C,A, F )−1.

For a subset R ⊆ {1, . . . , |C|} of box positions, let C ′ = (c′1, . . . , c
′
|C|−|R|) be the subsequence

obtained from C = (c1, . . . , c|C|) by removing all ci with i ∈ R. For every i /∈ R, we thus have
ci = c′i−∆i

, with ∆i = |R∩{1, . . . , i−1}|. We write C ′ = C−R and C ′ v C. The following property
clearly holds.

Proposition 3. Let (C,A, V, F ) and (C ′, A, V, F ) be two instances with C ′ = C − R for some
R ⊆ {1, . . . , |C|}. Then OPT (C ′, A, F ) ≤ OPT (C,A, F ).

In the online version of the problem, it is generally not possible to decide if a valid move is
optimal due to the missing information on the boxes in the invisible area. Nevertheless, some valid
moves can be considered as non-interesting as they are dominated by others. We now show how to
determine a subset of Σ(C,A, F ) that necessarily contains an optimal move.

The ordered set of boxes in the accessible area of an instance (C,A, V, F ) can be partitioned into
maximal ordered subsets of contiguous boxes having the same color. We denote by B(C,A) the
resulting partition, and every element b ∈ B(C,A) is called a block. For the example of Figure 2,
we have B(C,A) = ((1), (2), (3), (4), (5), (6), (7), (8, 9), (10)).

Let ΣR(C,A, F ) be the subset of valid moves (p, `) such that p is the leftmost box of a block
b = (p, . . . , p + |b| − 1) and ` = min{|b|, F}. We will prove that ΣR(C,A, F ) necessarily contains
an optimal move. Note that the size of ΣR(C,A, F ) is at most A. For the example of Figure 2, we
have ΣR(C,A, F ) = {(1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (7,1), (8,2), (10,1)}.

Proposition 4. ΣR(C,A, F ) contains an optimal move for (C,A, V, F ).

Proof. Let (p∗, `∗) be an optimal move for (C,A, V, F ), and let b = (p, . . . , p+ |b| − 1) be the block
in B(C,A) such that p∗ ∈ b. By construction, we have (p∗, . . . , p∗ + `∗ − 1) ⊆ b. Let (p, `) be the
move in ΣR(C,A, F ) with ` = min{|b|, F}. Clearly, `∗ ≤ F and `∗ ≤ |b|, which implies ` ≥ `∗.
Hence C � (p, `) v C � (p∗, `∗), and it follows from Proposition 3 that OPT (C � (p, `), A, F ) ≤
OPT (C � (p∗, `∗), A, F ). Since (p∗, `∗) is an optimal move, (p, `) is also optimal.

The two following propositions identify two types of optimal moves. They slightly generalize
Proposition 2 and 3 in (Baptiste, Rebaine, and Brika 2011).

Proposition 5. If b = (p, . . . , p+ |b| − 1) is a block in B(C,A) for (C,A, V, F ) with |b| ≥ F , then
(p, F ) is an optimal move in ΣR(C,A, F ).
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Proof. Let S be an optimal strategy for (C,A, V, F ), and assume that the j-th move in S is the first
one that removes at least one box of b. Assume also that this j-th move of S removes ` contiguous
boxes (not necessarily all in b). Let S′ be the strategy obtained from S by first removing boxes
p, . . . , p+`−1 in one move (i.e., performing move (p, `)), and then executing all moves of S, except
the j-th one. Clearly, all moves in S′ are valid, and the sequence resulting from the first j moves of
S is equal to the sequence resulting from the first j moves of S′. Hence, S′ is also optimal. Consider
now move (p, F ) in ΣR(C,A, F ). Since C � (p, F ) v C � (p, `), it follows from Proposition 3 that
OPT (C � (p, F ), A, F ) ≤ OPT (C � (p, `), A, F ), which means that (p, F ) is optimal.

Proposition 6. If (p, `) is a move in Σ(C,A, F ) such that ci 6= cp for all i ∈ {1, . . . , |C|} \
{p, . . . , p+ `− 1} then move (p, `) belongs to ΣR(C,A, F ) and is optimal.

Proof. Note first that the two assumptions (p, `) ∈ Σ(C,A, F ) and ci 6= cp for all i ∈ {1, . . . , |C|} \
{p, . . . , p + ` − 1} imply that b = (p, . . . , p + ` − 1) is a block in B(C,A), which means that
(p, `) ∈ ΣR(C,A, F ). Let S be an optimal strategy for (C,A, V, F ), and assume that the j-th move
in S is the first one that removes at least one box of b. Assume also that this j-th move of S
removes `′ contiguous boxes. Clearly, `′ ≤ ` since ci 6= cp for all i ∈ {1, . . . , |C|} \ b. Let S′ be the
strategy obtained from S by first removing boxes p, . . . , p + `′ − 1 in one move (i.e., performing
move (p, `′)), and then executing all moves of S, except the j-th one. All moves in S′ are valid, and
the sequence resulting from the first j moves of S is equal to the sequence resulting from the first
j moves of S′. Hence, S′ is also optimal. Since C� (p, `) v C� (p, `′), it follows from Proposition 3
that OPT (C � (p, `), A, F ) ≤ OPT (C � (p, `′), A, F ), which means that (p, `) is optimal.

4. The online algorithm

The results of Section 3 suggest the following generic online algorithm: while C is not empty,
build the set B(C,A) of blocks and determine the subset ΣR(C,A, F ) of valid moves. If a block b =
(p, . . . , p+|b|−1) has |b| ≥ F boxes, then perform move (p, F ). Also, if a block b = (p, . . . , p+|b|−1)
with |b| < F is such that ci 6= cp for all i ∈ {1, . . . , |C|} \ b, then perform move (p, |b|). Note that
an online algorithm can check the condition ci 6= cp for all i ∈ {1, . . . , |C|} \ b only if |C| ≤ A+ V .
Indeed, the color of the boxes in the invisible area is not known before their appearance in the
visible area. The pseudo-code of a generic online algorithm is described below, where R is any rule
that chooses a move in ΣR(C,A, F ).

1 Input : i n s t ance (C,A, V, F ) ;
2 while C 6= ∅ do
3 Determine B(C,A) and ΣR(C,A, F ) ;
4 i f the re i s a move (p, `) ∈ ΣR(C,A, F ) with ` = F then
5 s e t (p∗, `∗) to (p, `) ;
6 else i f |C| ≤ A+ V and there i s b = (p, . . . , p+ |b| − 1) ∈ B(C,A)
7 such that ci 6= cp f o r a l l i ∈ {1, . . . , |C|} \ b then
8 s e t (p∗, `∗) to (p, |b|) ;
9 else determine a move (p∗, `∗) ∈ ΣR(C,A, F ) with a r u l e R ;

10 Perform move (p∗, `∗) and r e p l a c e C by C � (p∗, `∗) ;
11 end while

Note that the moves (p∗, `∗) ∈ ΣR(C,A, F ) determined by rule R at line 9 are such that `∗ = |b|,
where b is the block in B(C,A) that contains p∗. For ease of reading, we write that R chooses a
block in B(C,A) (instead of a move in ΣR(C,A, F )). Also, the color c(b) of a block b is the color of
the boxes that it contains. We now describe six simple and intuitive rules R. They are illustrated in
Figure 3 using the example of Figure 2. So let B(C,A) = (b1, . . . , bn) be the ordered set of blocks.
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first Select block b1.

rand Choose r in {1, . . . , n} with a uniform distribution, and select block br.

large Choose the leftmost block br such that |br| = maxn
i=1 |bi|.

largePlus Choose the leftmost block br such that (|br| + λr) = maxn
i=1(|bi| + λi), where λi is

determined as follows: if 1 < i < n and c(bi−1) = c(bi+1) then λi = |bi−1|+ |bi+1|, else λi = 0.
In words, λi is a bonus on value |bi| used by the previous rule, to reflect the fact that the
boxes in bi−1 and bi+1 are merged into a single block after the removal of block bi.

pop Let nc be the number of boxes of color c in the accessible area. Choose the leftmost block br
such that nc(br) = minn

i=1 nc(bi)
locOpt Let m = min{|C|, A + V } and C ′ = {c1, . . . , cm}. Instance (C ′, A, V, F ) has all boxes in

the accessible or in the visible area. Determine an optimal strategy S for (C ′, A, V, F ) with
the algorithm of Baptiste et al. (2013), and choose br as the block that contains all boxes
removed in the first move of S.

Note that the ‘large’, ‘largePlus’, and ‘pop’ rules were introduced in (Baptiste, Rebaine, and Brika
2012).

4.1 Computational results

In order to evaluate the performance of the online algorithms of the previous section, we con-
sider instances with 400 boxes generated as follows. The size A of the accessible area belongs to
{10, 20, 30, 40, 50}, the capacity F of the forklift belongs to {2, 3, 4, 5}, the number of different
colors belongs to {3, 5, 8}, and the instance type is a, b, or c, where a means that the number of
boxes of each color is the same (up to a rounding difference of one unit), b means that 50% of the
boxes have color 1 while the number of boxes of the other colors are the same, and c means that
each of the colors 1 and 2 represent 25% of the boxes while the number of boxes of the other colors
are the same. These characteristics were inspired by the instances encountered in practice, which
had a forklift capacity of three, about four different destinations, and number of boxes and color
distributions as described above.

For each combination of the above parameters, we randomly generated five sequences, which
gives a total of 5× 4× 3× 3× 5 = 900 instances.

4.1.1 No visible area

We first set the size V of the visible area to 0. For each instance and each rule, we computed
the total number of moves needed to remove all boxes. For each instance we also determined the
optimum value produced by the offline algorithm of Baptiste et al. (2013), where it is assumed
that all boxes are visible (but not necessarily accessible). For each instance and rule, we calculated
the relative percent deviation (RPD) between the attained number of moves (res) and the optimal
value (opt), i.e. 100 · (res − opt)/opt. We then determined the average RPD (ARPD), minimum,
first quartile, median, third quartile, and maximum RPD for each rule. Figure 4 illustrates these
values in box plots. The following can be observed.

Rule ‘first’ has the weakest performance with an ARPD of 59.3%. Slightly better is rule ‘large’
with an ARPD of 51.7%. Rules ‘rand’ and ‘pop’ are substantially better than ‘first’ and ‘large’
with an ARPD of 32.7% and 30.6%, respectively. The best rules are ‘largePlus’ and ‘locOpt’ which
have a much lower ARPD of 14.7% and 15.7%, respectively. These findings are also supported by
the other statistical measures. Indeed, the ‘largePlus’ and ‘locOpt’ rules have substantially lower
medium RPDs and lower spreads between the first and third quartiles than the other rules. It can
also be observed that the ‘largePlus’ rule has a significantly lower median RPD than the ‘locOpt’
rule while having a slightly larger spread. Note also that the results obtained with the ‘large’,
‘largePlus’, and ‘pop’ rules are similar to the values obtained in (Baptiste, Rebaine, and Brika
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Figure 3. Illustration of the six rules using the example in Figure 2. A run of the online algorithm is depicted as follows. The

numbers on the left are counting the moves. Boxes on the left of the dotted vertical line are in the accessible area while boxes
on the right are in the visible area. The boxes in the invisible area are not shown. Each move removes the boxes with a black

or white cross.

2012), which are the best current benchmarks for our problem.
The attained results may be interpreted as follows. Rule ‘first’ always removes the first block. In

order to do better than this trivial strategy, one has to remove a block bi with a preceding block
bi−1 and a succeeding one bi+1 of the same color. If |bi−1| + |bi+1| ≤ F the single block resulting
from the merge of these two blocks can then be removed in a single move instead of two. With rule
‘large’, such a profitable merge rarely happens. Indeed, once the largest blocks have been removed,
most of the remaining blocks are of size 1, and the algorithm then often removes the first block (if
all of them are of size 1), in which case obviously no profitable merge can happen, or the last one
(if the boxes that just entered the accessible area have created a block with more than one box).
This behavior can easily be observed in Figure 3 where the ‘large’ rule removes only five times
another block than the first or last one (i.e., in moves 1, 6, 14, 15, and 20), and two of these moves
are performed because they remove the last boxes of a color.
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Figure 5. Comparison of the attained RPDs by the ‘largePlus’ rule (dark grey) and the ‘locOpt’ rule (light grey) on different

subsets of instances.

Profitable merges are more frequent with the ‘rand’ and ‘pop’ rules as they occasionally merge
two blocks of the same color by chance. Extending rule ‘large’ by including a bonus for the merge
of two blocks of the same color makes a big difference in terms of performance quality. Indeed, the
so obtained ‘largePlus’ rule performs quite well. On average, its performance is even comparable
to the ‘locOpt’ rule, which is executing ‘optimal’ moves if there were no boxes in the invisible area.

Figure 5 compares the two best rules ‘largePlus’ and ‘locOpt’ on different subsets of instances.
The following can be observed. The performance of the ‘largePlus’ rule substantially decreases as
the number of colors increases. This result may be explained as follows. In instances with a large
number of colors, the probability of merging two blocks with the ‘largePlus’ rule is generally lower
than in instances with fewer colors. In contrast, the performance of the ‘locOpt’ rule is quite good
with a larger number of colors. Observing the box plots of the different instance types, we conclude
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Figure 6. The box plots illustrate the minimum, first quartile, median, third quartile, and maximum RPD attained with the
‘locOpt’ rule and different sizes of V . The ARPDs are represented by diamonds.

that instances with a uniform distribution of colors (instance type a) are slightly more difficult
than instances of the other types for both rules. Furthermore, the performance of the ‘locOpt’ rule
improves as the size of the accessible area increases. It may be argued that the more boxes the
‘locOpt’ rule sees, the less myopic the chosen moves are. The performance of the ‘largePlus’ rule
is quite independent of the size of the accessible area. Finally, the instances become more difficult
as the fork size increases for both rules.

4.1.2 With a visible area

The only rule that uses information about boxes in the visible area is the ‘locOpt’ rule. We now
analyze its performance as the size of the visible area increases. For this purpose, we ran the
‘locOpt’ rule and with a visible area of size V ∈ {0, 10, 20, 30, 60, 90, 120, 200, 300, 400}. Figure 6
illustrates the obtained results in box plots. The following can be observed.

With V = 0, the ARPD is 15.7%, the median RPD is 16.3% and the spread between first and
third quartile is 9.7%. These numbers decrease as V increases until they are all 0 at V = 400.
Clearly, if all the boxes are in the accessible or in the visible area, then the ‘locOpt rule always
finds an optimal solution. When compared to the ’largePlus’ rule (which does not take into account
the visible area), the ‘locOpt’ rule generates lower values if the visible area has about 10 or more
boxes.

5. The near rule

Motivated by the quite good performance of the ‘largePlus’ rule and on the basis of the above
discussion, we developed another rule called ‘near’, which is also applied within the generic online
algorithm. This rule also tries to merge two blocks of the same color when removing a block, but
with a slightly different philosophy. After merging two blocks of the same color, the newly formed
block can be removed by a single move only if this new block is not larger than the fork size.
Hence, no move is saved if the newly formed block is larger than the fork size, and we take this into
account. Also, it is often impossible to merge two blocks by the removal of a single block. In this
case, we try to bring closer together two blocks of the same color that are somewhat near to each
other in the sequence. We therefore define a distance between blocks of the same color. Finally, if
there is a visible area (i.e., V > 0), and the color of the first visible box is the same as the color
of the last box in the accessible area, then we do not remove the last block of the accessible area
since this may lead to an additional required move.
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Figure 7. A run of the example with the ‘near’ rule. The obtained solution with 16 moves is optimal.

Formally, the ‘near’ rule can be defined as follows. For an instance (C,A, V, F ), let B(C,A) =
(b1, . . . , bn) be the usual ordered set of blocks in the accessible area, and let B(C,A + V ) =
(b′1, . . . , b

′
r) be the similar partition of the set of boxes that lie in the accessible or the visible

area. If V > 0, |C| > A, and cA = cA+1, then the color of the first box of the visible area
is the same as the color of the last accessible box, and we define q = n − 1; otherwise we set
q = n. We then have bi = b′i for i = 1, . . . , q, and we only consider the removal of one of the first
q blocks. For the example of Figure 2, we have B(C,A) = ((1),(2),(3),(4),(5),(6),(7),(8,9),(10)),
B(C,A+ V ) = ((1),(2),(3),(4),(5),(6),(7),(8,9),(10),(11,12),(13)), and q = 9.

For every block bi, i ≤ q− 1, we compute a distance di and a set Ii of indices as follows: let j be
the smallest index strictly larger than i such that c(b′j) = c(bi). If j does not exist (there is no such

block) or if |bi|+ |b′j | > F (the merge of bi with b′j would create a block larger than the fork size),
we set di = ∞ and Ii = ∅; otherwise, we set di = j − i − 1 and Ii = {i + 1, . . . ,min{i + di, q}}.
In words, every block b` with ` ∈ Ii is candidate to be removed between two blocks bi and b′j at
distance di from one another and of the same color. For the example of Figure 7, we have d1 = 2,
d2 = 5, d3 = 2, d4 = 2, d5 = 3, d6 = ∞, d7 = 2, d8 = 2, and I1 = {2, 3}, I2 = {3, 4, 5, 6, 7},
I3 = {4, 5}, I4 = {5, 6}, I5 = {6, 7, 8}, I6 = ∅, I7 = {8, 9}, I8 = {9}.

If di =∞ for all i = 1, . . . , q− 1, the ‘near’ rule selects block b1. Otherwise, let dmin = minq−1
i=1 di

and let Imin be the union of the sets Ii with di = dmin. The ‘near’ rule chooses the leftmost
block br such that |br| = maxi∈Imin |bi|. For the example of Figure 7, we have dmin = 2, Imin =
{2, 3, 4, 5, 6, 8, 9}, and b8 is selected.

We observe in Figure 7 that, when applied to the example of Figure 2, the ‘near’ rule produces
an optimal solution with 16 moves, which is strictly better than all previous strategies. Note that
the first or the last block is removed in only two of the 16 moves. Observe also that in contrast
to the ‘locOpt’ rule, which can be applied in practice only with the help of a computing device,
the basic principles of the ‘near’ rule can be easily applied by human operators. Indeed, the blocks
can be observed visually, and the distances di are quite simple to calculate exactly, or at least
to estimate. Roughly speaking, the operator must choose a large block between two blocks of the
same color that are as close as possible to each other.
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Figure 8. The box plot illustrates the minimum, first quartile, median, third quartile, and maximum RPD attained with the

‘near’ rule (without a visible area). The ARPD is represented by a diamond. For the purpose of comparison, we reproduce the
results obtained with the ‘largePlus’ and ‘locOpt’ rules.

5.1 Computational results

In order to evaluate the performance of the ‘near’ rule, we ran the online algorithm with the ‘near’
rule on the 900 instances of Section 4.1, first setting the visible area to V = 0. Figure 8 illustrates
the obtained results in a box plot. The following can be observed.

The ‘near’ rule has an ARPD of 6.1%, a median RPD of 6.3%, and a spread between first and
third quartile of only 2.3%. These numbers are considerably lower than those obtained by the
previous six rules. More details are given in Figure 9 where the ‘near’ rule is compared to the
‘largePlus’ and ‘locOpt’ rules on different subsets of instances. It can be observed that the ‘near’
rule clearly outperforms the two other rules. Furthermore, the results obtained with the ‘near’ rule
are robust with respect to different instance characteristics.

Figure 10 further supports these findings by illustrating the empirical cumulative distribution of
the relative percent deviations obtained with the ‘largePlus’, ‘locOpt’, and ‘near’ rules. It can be
seen that the ‘near’ rule almost always finds a solution with a relative percent deviation smaller
than 10%, while for the ‘locOpt’ and ‘largePlus’ rules this is only the case for 22% and 37% of the
instances, respectively. In addition, while the ‘locOpt’ and ‘largePlus’ rules have a relative percent
deviation larger than 30% for some instances, this never occurs with the ‘near’ rule, the maximum
being 11%. The standard deviation is 8.8% for the ‘largePlus’ rule, 6.9% for the ‘locOpt’ rule, and
1.9% for the ‘near’ rule.

We next report the results obtained with the ‘near’ rule in Figure 11, when the visible area is of
size V ∈ {0,10,20,30,60,120,200,300,400}.

When increasing the visible area size from 0 to 10, the ARPD slightly decreases from 6.1% to
5.9%, the median RPD goes from 6.3% to 5.9%, and the spread between first and third quartile
decreases from 2.3% to 2.0%. Further increasing the visible area has no effect on the results. These
numbers indicate that the performance of the ‘near’ rule slightly increases if there is a visible area.
The main reason is that the knowledge of the visible area allows to prevent the removal of the last
block of the accessible area if other boxes of the same color immediately follow in the visible area.
Clearly, the boxes directly following the accessible area have a larger impact on the selection of
the move than boxes that are further away, explaining that results between small and large visible
areas are similar.

Since the performance of the ‘locOpt’ rule improves when the size of the visible area increases,
we can estimate the size of the visible area with which the ‘near’ and ‘locOpt’ rules have a similar
performance. Observing the results in Figure 6 and 11, we conclude that the ‘near‘ rule outperforms
the ‘locOpt’ rule for V ≤ 120, whereas ‘locOpt’ is better if V > 200. These findings are supported
by Figure 12, which displays the percentage of instances for which the ‘near‘ rule gives worse,
equal, or better results than the ‘locOpt’ rule. In conclusion, the ‘locOpt’ rule needs a large visible
area to meet the performance of the ‘near’ rule. In practice, however, the size of the visible area is
typically quite small.
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Figure 9. Comparison of the attained RPDs by the ‘near’ rule (dark grey), the ‘largePlus’ rule (light grey) and the ‘locOpt’

rule (white) on different subsets of instances.
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Figure 10. Empirical cumulative distribution of the relative percent deviations for the ‘largePlus’, ‘locOpt’, and ‘near’ rules.
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Figure 13. Relative decrease of the number of moves as the fork size increases.

5.2 On the impact of increasing the fork size

In a final set of experiments, we estimate the impact of increasing the fork size, which might be of
interest when analyzing investments in new forklifts. For this purpose, we considered all instances
with fork size 2, and ran the online algorithm with the near rule and increased fork size F = 3, 4,
and 5. For each instance and fork size, we calculated the relative decrease of the number of moves,
i.e. (rF − rF−1)/rF , where rF is the total number of moves obtained with fork size F . Note that
400 moves are needed for all instances if F = 1. Figure 13 displays the obtained values in box plots.
The following can be observed.

Increasing the fork size from 1 to 2 has a huge impact. Indeed, the total number of moves
decreases by about 42% on average. The effect of increasing the fork size then diminishes. The
increase from 2 to 3, 3 to 4, and 4 to 5 generates a relative decrease of the number of moves of
about 17%, 8%, and 4%, respectively. Hence, a fork size of 3 or 4 might be adequate in practice.

6. Concluding remarks

We addressed an online version of the problem of minimizing the number of moves for unloading
boxes off a gravity conveyor. Several online heuristic algorithms were introduced and extensive
experimental tests were conducted to assess their performance. It turned out that the online algo-
rithm with the ‘near’ rule performs extremely well. Despite its simplicity and its online character, it
generates solutions that are almost optimal. Its performance is also robust with respect to different
instance characteristics. In addition, its basic principles can be easily applied in practice by human
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operators.
While the order of the hidden boxes is typically not known in advance, the total number of boxes

of each color can often be estimated. This additional information could be exploited to improve
the results, in particular when evaluating the possible moves with the proposed online algorithm.
Indeed, it is often the case that multiple moves have the same quality evaluation, and it might be
interesting to simulate several sequences of colors in the invisible area to break ties. We would then
choose the move that produces, on average, the best result.

The results of this work may also be used in or stimulate research on similar problems. They arise
not only in settings where a conveyor belt transports different types of products to an unloading
zone, but also in games such as Clickomania and SameGame (Biedl et al. 2001).
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