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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2018-13
https://www.gerad.ca/en/papers/G-2019-13
https://www.gerad.ca/en/papers/G-2019-13




A decomposition-based heuristic for large employee schedul-
ing problems with inter-department transfers

Dalia Attia a,c

Reinhard Bürgy b,c

Guy Desaulniers a,c

François Soumis a,c
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Abstract: We consider a personalized employee scheduling problem with characteristics present in
retail stores consisting of multiple departments. In the setting under study, each department generally
covers its demand in employees over the planning horizon of a week by assigning shifts to its own
staff. However, the employees can also be transferred to other departments under certain conditions
for executing entire shifts or parts of shifts there. The transfer feature enables to improve the overall
schedule quality considerably when compared to the non-transfer case. Given the complexity of the
problem, we propose a three-phased decomposition-based heuristic. In the first phase, we consider each
department separately and solve a simplified version of the mono-department scheduling problems.
From the obtained solutions, we deduce inter-department shifts that could potentially reduce the
overall cost. This is examined in the second phase by re-solving the scheduling problem of the first
phase where the deduced inter-department shifts are included. In this phase, however, we decompose
the scheduling problem by time, looking at each day separately. From the obtained schedules, we then
devise inter-department demand curves, which specify the number of transfers between departments
over time. In the third phase, we decompose the initial scheduling problem into mono-department
problems using these inter-department demand curves. Consequently, our approach makes it possible
to solve mono-department optimization problems to get an overall schedule while still benefiting from
the employee transfer feature. In all three phases, the scheduling problems are formulated as mixed-
integer linear programs. We show through extensive computational experiments on instances with
up to 25 departments and 1000 employees that the method provides high-quality solutions within
reasonable computation times.

Keywords: Employees scheduling, shift scheduling, multi-department, retail industry, heterogeneous
workforce, mixed-integer linear programming, decomposition
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1 Introduction

Personnel scheduling consists of assigning employees to activities over time. As explained in Thompson

(2003), managers of all types of organizations should care about this recurrent task for the following

three primary reasons. First, personnel scheduling has a direct consequence on the profitability. An

under-supply of employees presumably leads to poor customer service which translates into lost busi-

ness, while an over-supply is related to an excess of salary costs. Second, employees have specific work

preferences, for example, with respect to the assigned activities, the time of day they work, the length

of their shifts, and with whom they work. Meeting these preferences generally translates to better

work satisfaction and performance. Third, managers usually dedicate a significant amount of time

and effort for developing employee schedules as it is no easy task to construct admissible, high-quality

solutions. A (semi-) automated scheduling process frees up precious time, so that the managers can

spend more time for other important tasks.

Researchers in management science and operations research have established a valuable body of

knowledge over the last decades helping the managers to better handle the labor scheduling task. In

particular, scientists have introduced mathematical models capturing the underlying decision-making

problems, developed methods for solving these inherently difficult optimization models; and studied

applications of the developed models and methods in industry underpinning the value of the develop-

ments. An important aspect of this research field is that no generally applicable employee scheduling

model and method exists. On the contrary, the specific characteristics on the industry and company

levels make it necessary to establish specialized solutions (Ernst et al., 2004). As a consequence,

employee scheduling problems have been studied extensively in various domains, including hospitals

(Wright and Mahar, 2013; Legrain et al., 2015), air transport (Desaulniers et al., 1998; Kasirzadeh

et al., 2017), factories (Berman et al., 1997; Faaland and Schmitt, 1993), restaurants (Love Jr. and

Hoey, 1990; Hur et al., 2004), and retail stores (Kabak et al., 2008; Bürgy et al., 2018). We refer the

reader to the survey papers of Ernst et al. (2004), Van den Bergh et al. (2013), and De Bruecker et al.

(2015) for a complete overview of the employee scheduling research field.

In this paper, we address a scheduling problem typically arising in the retail industry and call it

the employee scheduling problem with inter-department transfers (ESP-IDT). It consists of scheduling

the employees of a store during a multi-day time horizon. While we only consider weekly problems,

(slightly) longer time horizons can be considered without major changes. The given time horizon is

split into small consecutive time periods of a fixed duration, for example 15 minutes. We assume

that the store is partitioned into departments, which are units within the store with some degrees of

independence. Each department has its own (internal) employees, of which some are qualified to work

in other (external) departments, too. To cover its demand in employees, a department can use its own

staff or can borrow qualified employees from other departments as required. The transfer of employees

between departments is, however, regulated as these transfers may lead to some inconvenience on the

employees’ side, and to higher managerial complexity and some loss of productivity on the employer’s

side. More specifically, the employees work in shifts, and a shift is either fully executed in the home

department of the assigned employee or in one of the other departments he/she is qualified for. In

addition, we also consider shifts where, after a certain time, the employee is transferred from one

department to another. In this case, both work blocks must not be too short and one of the two

involved departments must be the employee’s home department.

We also consider the following standard characteristics of personalized employee scheduling prob-

lems. We assume that the days-off planning has been established telling on which days each employee

can be assigned to work a shift. Shift profiles can be specified to limit the possible start periods and

lengths of the shifts, and the rest period between two consecutive shifts of an employee must not be

too short. We assume that breaks within shifts are assigned in real-time depending on the observed

demand and do not model them explicitly. The demand forecasts may be increased in certain time

periods to account for the breaks in the scheduling problem. To measure the quality of the schedules,

we capture demand under- and over-coverage costs, salary costs, and transfer costs, which is a penalty



2 G–2019–13 Les Cahiers du GERAD

for the time employees spend in external departments. We seek to find an employee schedule with

minimum total cost.

The specific features of ESP-IDT are the simultaneous consideration of multiple departments, each

having its own employees, and the possibility to transfer employees between departments. Multi-

department problems occur, for example, in large department stores, in furniture retailers, and in

supermarkets. In these working environments, employees are typically assigned to one department but

have the knowledge and qualifications to work in other departments, too. This flexibility is valuable

for the employee scheduling task as it enables to better match supply and demand in employees.

Motivated by current practice, we only consider specific transfer shifts and assign some costs to the

time executed in external departments to handle the negative consequences of transfers mentioned

before. From an optimization perspective, it is not easy to make use of the transfers as, first, there

is a large number of possible inter-department shifts to consider, and second, there exists no natural

decomposition into mono-department problems when considering inter-department transfers. Hence,

the overall optimization problem tends to be extremely large and difficult to solve.

In this paper, we contribute to the employee scheduling research field by proposing a three-phased

decomposition-based heuristic for solving ESP-IDT. In the first phase, we consider each department

separately and solve a simpler version of the initial problem obtained by omitting individual features

of the employees. From the obtained schedules, we deduce inter-department shifts that potentially

lead to schedule improvements. In the second phase, we include these inter-department shifts to the

optimization problem of the first phase. This time, we decompose the problem not by department but

by time and solve the so-obtained daily scheduling problems. From the obtained schedules, we then de-

vise inter-department demand curves, specifying the number of transfers between departments for each

time period. In the third phase, we decompose the initial scheduling problem into mono-department

problems using these inter-department demand curves. In all three phases, the optimization problems

are formulated as mixed-integer linear programs (MILPs) and solved with a commercial MILP solver.

The remaining part of this paper is organized as follows. The next section provides a brief litera-

ture review pointing to some related works. Section 3 describes ESP-IDT formally, provides a MILP

formulation, and introduces an illustrative example. In Section 4, we propose a three-phase solution

method for ESP-IDT and illustrate it with our example. Section 5 describes the extensive compu-

tational experiments that are executed to evaluate the method developed in the previous section. A

conclusion is provided in Section 6, and the appendix contains the detailed numerical results of the

experiments.

2 Literature

As one can see in the survey papers listed in the previous section, employee scheduling problems or

related questions are addressed in a huge number of scientific works. In this section, we only point to

the articles that are, in our view, the most relevant with respect to our study.

A number of articles, including Loucks and Jacobs (1991); Sabar et al. (2008); Quimper and

Rousseau (2010); Côté et al. (2013); Dahmen and Rekik (2015), consider personnel scheduling prob-

lems with multiple activities and multi-activity shifts. In this setting, the goal is not only to specify

the work and rest hours for each employee, but also to define the activities assigned to the work peri-

ods, where typically qualifications and possibly preferences of the employees must be respected. These

problems are closely related to our study since a department can be seen as a specific activity. Similar

as in our work, the transition from one activity to another within a shift is usually regulated by, for

example, imposing minimum work durations before switching to another activity. However, the notion

of main activity, which would reflect the home department in our study, is usually not present. This is

an important difference as we penalize the time spent in external departments, reflecting the wish to

assign employees to their home department and only using the transfers as needed. This also limits the

possible downside effects of transfers, which are, for example, increased managerial complexity, higher

dissatisfaction of the employees, and some loss of productivity. We also remark that the number of
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employees is typically much larger in multi-department scheduling problems than in multi-activity

environments. It is, for instance, not unusual that up to 1000 employees work in multi-department

stores while a single department may consist of about 100 employees.

The home department feature is, to a certain extent, considered in Bard and Wan (2008). Their

goal is to select an optimal size and composition of full-time and part-time employees when the demand

in employees is specified by workstation group (WSG), which is a department in our terminology. The

employees must be assigned to a home WSG but can also work for other WSGs under some pre-defined

conditions. They highlight that the transfer feature is necessary to avoid excess idle time. However, the

number of transfers between WSGs are to be kept small due to layout restrictions, union agreements,

and supervisory preferences. The authors develop two versions of a multi-stage approach to solve their

problem, and test them on data provided by a U.S. Postal Service mail processing and distribution

center. This work clearly confirms the value and difficulty of including employee transfers between

departments. Their context is, however, structurally different from ours. We consider a setting where

the workforce is given and employees have individual preferences and qualifications, while Bard and

Wan’s goal is to optimize the workforce. Furthermore, ESP-IDT specifies less restrictive shift profile

rules, which leads to a substantially larger set of feasible shifts.

Departments are also considered in the study of Bard and Purnomo (2005), where hospital-wide

reactive scheduling of nurses is considered. More specifically, each unit, which corresponds to a depart-

ment in our terminology, establishes a midterm schedule independently. The units try to cover their

estimated demand with their own nurses in the best possible way. Bard and Purnomo consider these

schedules as input, and address the problem of reactively adjusting the nurses’ work schedules of the

next 24 hours to account for the daily fluctuations in the supply and demand of nurses. One of the

alternatives for improving the schedule is the transfer of nurses from their home unit to other units as

needed. The authors develop a specialized branch-and-price algorithm that solves instances with up to

200 nurses within ten minutes to optimality. While the notion of home department is also important

in this study, the general setting is clearly different from ESP-IDT. First of all, they consider a reactive

scheduling problem while ESP-IDT considers the initial schedule generation process, and second, in

contrast to the retail industry, where the shifts start and end at many different time points each day,

there are only few alternatives when looking at nurse shifts.

The most closely related work to our study is Dahmen et al. (2018). They consider ESP-IDT

except that they enforce the assignment of a shift during a non-day-off. Indeed, the authors consider a

multi-department employee scheduling problem with a weekly time horizon, the employees have a home

department and qualifications to work in other departments, and costs are assigned for over-coverage

and under-coverage of the department demands and for transfers and work times. Structurally, a main

difference is that a shift must be executed during a non-day-off of an employee in their study, while we

only state that the given days-off of the employees must be respected and a shift may or may not be

assigned to an employee for all other days. Having this choice is particularly important with part-time

employees. For those, one typically specifies the days during which they are not available, and all

other days can be chosen as workdays. Dahmen et al. propose a two-stage decomposition heuristic for

solving their scheduling problem. In the first stage, they solve a smaller optimization problem where

the data is aggregated and transfers are somewhat approximated. In the second stage, they generate

optimized schedules by solving a MILP, in which a subset of promising shifts, derived from the outputs

of the first stage, is present. While the “days-off” difference between their and our study has some

effects on the structure of feasible schedules, we show that the method we propose for ESP-IDT can

also be applied to the setting of Dahmen et al. (2018) with minor changes.

3 The employee scheduling problem with inter-department trans-
fers

In this section, we first define ESP-IDT formally, then formulate it as a mixed-integer program, and

finally introduce an illustrative example that will be used throughout Section 4.
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3.1 Problem statement

We consider a planning horizon of one week given by days J1 to J7. The time horizon is divided

into consecutive short time periods of some predefined length (for example, 15 minutes). Let P =

{p1, . . . , p|P |} be an ordered set comprising the resulting time periods, where pr refers to the rth

period of the week. We typically use p (without an index) for a generic period in P . Each period

p ∈ P starts and ends on a specific day of the week DAY(p) ∈ {J1, . . . , J7}. In the sequel, time lengths

will generally be specified as units of time periods.

ESP-IDT involves a set D of departments. A target demand bpd in employees needs to be satisfied

for each department d ∈ D at each time period p ∈ P . We consider the complete planning horizon, so

that a possible closing time of all departments simply results in zero demand for all departments in all

the corresponding time periods. We allow for under- and over-coverage of this demand but penalize

both deviations in the objective function with costs linear in the size of the deviation. Denote by cund
and covd the unit penalty cost paid for under- and over-coverage, respectively, in department d ∈ D.

We abstain from establishing unit penalty costs that depend on the time period to keep the notation

slightly simpler.

The demands can be covered by a set E of employees. Each employee e has a specific home

department dhe ∈ D and is qualified to work in a given set of departments De ⊆ D. Clearly, dhe ∈ De

holds. For each department d ∈ D, denote by Ed ⊆ E the set of employees with d as home department.

To capture the employees’ work time costs, a unit cost of cwt is charged for each period an employee is

working, and additionally, a unit transfer cost of ctr is charged for each period an employee is working

in another department than his/her home department.

We assume that the days-off planning has already been established, so that each employee e ∈ E
has a predefined set of work days, say J(e), and rest days over the planning horizon. The employees

work in shifts. A shift s is defined by an employee EMP(s), a start period STA(s) ∈ P , an end period

END(s) ∈ P as well as the department to which the employee is assigned in each period covered by

this shift. A shift may start at one day and finish at the next, in which case the shift is considered

to be assigned on the day of the starting period. Let P (s, d) be the set of periods employee EMP(s)

works in department d during shift s and denote by P (s) =
⋃

d∈D P (s, d) the complete set of periods

covered in shift s. A shift is called internal or external if it is completely executed in the assigned

employee’s home department or in an external department, respectively. If more than one department

is associated with a shift, then it is called a transfer shift. The cost cs to execute shift s can be inferred

from the work time and transfer costs, i.e., cs = cwt|P (s)|+ ctr(|P (s)| − |P (s, dhe)|). Shift profiles can

be specified to restrict both the start periods and the total lengths of the shifts. For example, one

can state in shift profiles that each shift must start at a full hour and its length must be a multiple

of an hour. Shift profile definitions are common in practice. They enable, for example, to reduce the

managerial complexity.

We only consider shifts fulfilling the following constraints. A shift s is either fully executed in one

of the departments De the assigned employee e = EMP(s) is qualified for, or after executing a first

work block in one of the departments in De, the employee e is transferred to another department in

De to execute the second work block. In this case, however, one of the assigned departments must be

the home department dhe , and both work block lengths must be at least of a given minimum duration.

Furthermore, shift s must start during a work day of e, i.e., DAY(STA(s)) ∈ J(e), and must satisfy

the shift profile rules mentioned before.

Denote by S the complete set of feasible shifts. For each employee e ∈ E, let Se = {e ∈ S : e =

EMP(s)} be the set of feasible shifts s of employee e. An employee schedule is obtained by selecting a

set of shifts from S that must be executed. We call a schedule S ⊆ S feasible if each employee e ∈ E
is assigned to at most one shift per day in J(e), works at most tmax

e periods over the planning horizon,

and a minimum number of rest periods rmin between consecutive shifts of e in schedule S is respected.

For any schedule S ⊆ S, define COV(S, p, d) = |{s ∈ S : p ∈ P (s, d)}| as the number of employees

present in department d ∈ D during period p ∈ P . The cost c(S) of a schedule S ⊆ S is given by the
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sum of its work time and transfer costs captured by the shift costs and its demand under-coverage and

over-coverage costs:

c(S) =
∑
s∈S

cs +
∑
p∈P

∑
d∈D

[
cund (bpd − COV(S, p, d))+ + covd (COV(S, p, d)− bpd)+

]
(1)

where notation (z)+ is a shortcut for max(0, z).

ESP-IDT consists of finding a feasible schedule S ⊆ S with minimum cost c(S).

3.2 A mixed-integer programming formulation

We now develop a MILP for ESP-IDT. For each shift s ∈ S, introduce a binary variable xs taking

value 1 if s is selected and 0, otherwise. To capture the over- and under-coverage of the demand,

introduce two non-negative variables y−pd and y+pd for each period p ∈ P and department d ∈ D. Then,

the following MILP describes ESP-IDT:

Minimize
∑
s∈S

csxs +
∑
p∈P

∑
d∈D

(cund y−pd + covd y
+
pd) (2a)

subject to

∑
s∈S:

p∈P (s,d)

xs − y+pd + y−pd = bpd for all p ∈ P and d ∈ D, (2b)

∑
s∈Se:

DAY(STA(s))=j

xs ≤ 1 for all e ∈ E and j ∈ J(e), (2c)

∑
s∈Se

|P (s)|xs ≤ tmax
e for all e ∈ E, (2d)

∑
s∈Se:

{pk,...,pk+rmin}∩P (s)6=∅

xs ≤ 1 for all e ∈ E and k ∈ {1, . . . , |P | − rmin}, (2e)

xs ∈ {0, 1} for all s ∈ S, (2f)

y−pd, y+pd ≥ 0 for all p ∈ P and d ∈ D. (2g)

The objective function (2a) minimizes the total cost as defined in (1). Constraints (2b) link the
variables y−pd and y+pd to the variables xs according to their meaning. Constraints (2c) limit the number

of shifts assigned to an employee for each of his/her potential workdays. Constraints (2d) ensure that

the employees’ maximum weekly work time limits are respected. Constraints (2e) model the minimum

rest time of rmin periods between two shifts for each employee e by imposing that for each set of rmin+1

consecutive periods, at most one selected shift of e must intersect with them. This ensures that, after

the end of a shift of e, the next must start at least rmin periods later. Finally, constraints (2f) and (2g)

specify the domains of the decision variables. Note that using constraints (2c), one can eliminate some

of the constraints (2e). Indeed, if for some k, the set of time periods {pk, . . . , pk+rmin} all belong to

the same day, then the corresponding constraint in (2e) can be dropped.

The number of variables in (2) and the difficulty to solve it mainly depends on the number of shifts.

This, in turn, depends on various factors such as the number of departments, the number of employees

and their qualifications, the work block length constraints and the shift profiles. The number of shifts

is typically in the order of multiple millions even in instances for medium-sized organizations with, for

example, five departments, 200 employees working five days a week in shifts with a length between five

to eight hours. In particular, the possibility to transfer employees between departments drastically

increases the scheduling flexibility and the number of shifts to be considered. We refer the reader to

Section 5 for some specific sizes of shift sets. Solving (2) for larger instances is simply impractical

with state-of-the-art MILP solvers. Indeed, not only the optimization process but already the task of

generating and loading the input data may pose some major problems.
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3.3 An example

We introduce a small example to be used in Section 4 for illustrating our method. In this example,

the time horizon is divided in periods with a length of two hours (which would typically be too long in

practice), so that there are 84 periods in total. Figure 1 describes the two departments of the example

by showing their demand curves and providing data about the employees. Each employee is listed

in his/her home department. The name of an employee is surrounded by a rectangle if he/she can

work in the other department, too. The days-off are indicated by a black line at the vertical position

of the corresponding periods. The shift profiles specify that the minimum work block length is one

period, the shift length must be between 2 and 4 periods, and there is no restriction with respect to

the start period. The maximum total work time of each employee is 20 periods. The unit under- and

over-coverage cost (per employee and period) is 18.8 and 9.4, respectively, the unit work time cost

is 0.3, and the unit transfer cost is 0.2.

Department D1

1

2

3
Demand

Period
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

day 1 day 2 day 3 day 4 day 5 day 6 day 7
Employees

E1

E2

E3

Department D2

1

2

3
Demand

Period
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

day 1 day 2 day 3 day 4 day 5 day 6 day 7
Employees

E4

E5

E6

Figure 1: The two departments of our illustrative example.

4 A three-phase solution method for ESP-IDT

When dealing with large multi-department employee scheduling problems, a typical approach is to

decompose the overall problem into mono-department problems that are then solved separately. For

ESP-IDT, the decomposition into mono-department problems is not obvious. When neglecting the

chance to transfer employees to other departments, this decomposition is naturally obtained. How-

ever, as shown in the literature and by our computational results in Section 5, including the transfer

possibility leads to substantially improved schedules. We will therefore present a method that makes

it possible to solve mono-department optimization problems to get an overall schedule while still ben-

efiting from the employee transfer feature.

As depicted in Figure 2, our method, called multi-phase decomposition heuristic (MP-DH), is

composed of three phases, which can briefly be described as follows. In the first phase, we look at

each department separately and find an optimized schedule using only internal shifts. To reduce the
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computational effort, a simplified version of model (2) is used for this purpose in which employees are

not considered individually resulting in a so-called anonymous employee scheduling problem. Based

on the obtained schedules, we then generate external and transfer shifts that can possibly improve

these schedules. In the second phase, the anonymous employee scheduling problem used in the first

phase is re-solved using the external and transfer shifts generated in the first phase. This time, we

do not decompose the problem into mono-department problems as we aim to evaluate the impact of

the employee transfers. However, to keep the computational burden reasonable, we decompose the

problem by time, looking at each day separately. The solutions of these daily, anonymous employee

scheduling problems give rise to inter-department demand curves, i.e., for each time period, we decide

how many employees of one department must be serving in another department either within external

or transfer shifts. Based on these demand curves, we then solve a version of the global model (2) in

the third phase. The inter-department demand curves make it possible to decompose the problem into

mono-department problems and to reasonably limit the number of shifts that are considered. The next

sections describe the three phases in detail.

Phase 1 Phase 2 Phase 3

Generate promising
external and
transfer shifts

Derive inter-
department demands

Solve mono-
department problems

with transfers

Figure 2: The three phases of MP-DH.

4.1 First phase: Generate promising external and transfer shifts

In this phase of MP-DH, we generate promising external and transfer shifts using the following three

steps. In a first step, we determine periods where the departments will possibly not be able to match

their demands perfectly with internal shifts. Periods with demand under-coverage are formidable

candidates to be covered by external employees. Similarly, periods that indirectly caused demand

over-coverage in other periods are also good candidates for a coverage by external employees. We

extract these critical periods in a second step and use them to create a set of external and transfer

shifts in a third step.

4.1.1 Determine under- and over-coverage curves

The periods with possible demand under- and over-coverage are determined with a simplified MILP

of (2). We not only consider each department separately, but also deal with an anonymous version of

the scheduling problem, i.e., the employees are not considered individually.

More formally, for each department d ∈ D, we derive the following model from (2). First, we

only consider internal shifts and do not associate specific employees with a shift. Hence, for a given

department d, a shift s is fully specified by its start and end periods. Note that the cost cs of such an

anonymous shift is still well-defined. Denote by Sdepd the complete set of shifts for department d. The

size of this set is small. Indeed, suppose that the shift starting periods are restricted to full hours, then

at most 24 · 7 = 168 starting periods per week exist. If five possible shift lengths, for example four,

five, six, seven, and eight hours, are considered, then no more than 840 shifts are obtained. When

considering anonymous shifts, some employee specific constraints cannot be modeled in the same

manner, such as the employees’ maximum of one shift per workday, maximum work time per week,

and the minimum rest periods. We replace some of these constraints by more aggregated versions.

Specifically, introduce a non-negative integer variable xs for each shift s ∈ Sdepd indicating how many

employees work shift s and two non-negative variables y−pd and y+pd for each period p ∈ P capturing

the under- and over-coverage of the demand. Then, solve the following MILP for department d ∈ D:

Minimize
∑

s∈Sdep
d

csxs +
∑
p∈P

(cund y−pd + covd y
+
pd) (3a)
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subject to

∑
s∈Sdep

d :
p∈P (s)

xs − y+pd + y−pd = bpd for all p ∈ P, (3b)

∑
s∈Sdep

d :
DAY(STA(s))=Jr

xs ≤ |{e ∈ Ed : Jr ∈ J(e)}| for all r ∈ {1, . . . , 7}, (3c)

∑
s∈Sdep

d

|P (s)|xs ≤ tmax
e |Ed|, (3d)

xs ∈ Z≥0 for all s ∈ Sdepd , (3e)

y−pd, y+pd ≥ 0 for all p ∈ P. (3f)

The objective function (3a) captures the shift costs and the demand under- and over-coverage costs

of department d as in (2a). Constraints (3b) link the variables y−pd and y+pd to the variables xs as

in (2b). For each day, a constraint in (3c) limits the total number of shifts starting at this day to the

number of employees available at day Jr in department d. These constraints represent the restriction

given in (2c). Observing that the right-hand side of constraint (3d) is an upper bound on the total

time available of all employees of department d over the planning horizon, (3d) ensures that this upper

bound is respected, reflecting constraints (2d). Finally, constraints (3e) and (3f) specify the domains

of the decision variables.

For our example, Figure 3 shows the 30 shifts selected by solving model (3) and the resulting

available capacity in employees (gray area under the demand curves). For department D1, we observe

that there is an under-coverage of one employee in periods 5, 10, 28, 45 to 48, 64, and 69, and an

over-coverage of one employee in period 59. For department D2, there is an under-coverage of one

employee in periods 18 to 19.

Department D1

1

2

3
Demand

Period
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

day 1 day 2 day 3 day 4 day 5 day 6 day 7

Selected anonymous shifts
s1

s2

s3

s4

s5

s6

s7

s8

s9 s10 s11 s12

s13

s14

s15

Department D2

1

2

3
Demand

Period
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

day 1 day 2 day 3 day 4 day 5 day 6 day 7

Selected anonymous shifts
s16

s17

s18 s19

s20

s21

s22

s23

s24

s25

s26

s27

s28

s29

s30

Figure 3: An optimal solution of model (3) for each department of our example.



Les Cahiers du GERAD G–2019–13 9

Algorithm 1: Extraction of critical time intervals from under-coverage.

1 while there exists some period p with y−pd > 0 do

2 Start with r = 0.
3 while r < |P |+ 1 do

4 Increase r by 1 until finding a period pr with y−pr,d > 0 or r = |P |+ 1.

5 if r < |P |+ 1 then
6 Create an interval i and set STA(i) to pr.

7 Continue to increase r by 1 until finding a period pr with y−pr,d = 0 or r = |P |+ 1.

8 Set END(i) to pr−1, and add interval i to set Icritd .

9 end

10 Decrease the under-coverage by one in all periods, i.e., set y−pd to max(y−pd − 1, 0) for all p ∈ P .

11 end

12 Note: Some intervals may be generated multiple times. However, an interval is only added to set Icritd if it is
not yet present in this set.

4.1.2 Select critical time intervals

Periods with demand under-coverage and those implying demand over-coverage in other periods are

considered as critical and are, in our view, good candidates to be covered with external and transfer

shifts. We are especially interested in extracting critical time intervals given by consecutive critical

periods. Denote a time interval i = [STA(i),END(i)] by its start period STA(i) and its end period

END(i).

For each department d ∈ D, we extract a set Icritd of critical time intervals from demand under-

coverage and over-coverage of the solution of model (3) as follows.

For the demand under-coverage y−pd, p ∈ P , we use the simple scanning procedure described in

Algorithm 1 to extract critical time intervals. By scanning through all periods, it finds maximal

intervals with under-coverage and stores them in the set of critical time intervals. Then, the under-

coverage is reduced by one in all periods and the previous scanning step is repeated. In our example,

this procedure generates the critical intervals [p5, p5], [p10, p10], [p28, p28], [p45, p48], [p64, p64], and

[p69, p69] for department D1 and [p18, p19] for department D2 from the solution depicted in Figure 3.

As demand over-coverage is typically less costly (per unit) than is under-coverage, we are only

interested in over-coverage intervals containing at least a given number of consecutive periods γ (for

example, the number of periods that corresponds to one hour). With this parameter, we then apply

Algorithm 2 to generate additional critical time intervals for set Icritd .

The reasoning behind this algorithm is the following. As shift s was chosen to be executed, it

seems not to be promising to remove s from the schedule because a (costlier) under-coverage would

occur in the periods between the start of s and the start of i or between the end of i and the end

of s. Both situations are reflected in the created critical intervals i′ and i′′. These intervals allow us

then to transfer some of the demand in these intervals to employees from other departments. In our

example, there is an over-coverage in department D1 in period p59. This over-coverage is caused by

the shift starting in period p58 and ending in p59. We therefore add the critical interval [p58, p58] for

department D1.

The solution provided by model (3) is one of typically many optimal solutions, and other optimal

solutions may possess different demand under- and over-coverage curves, which would result in different

critical time intervals. To partially cope with this ambiguity, we try to first generate other optimal

solutions by pre- or postponing single shifts (without changing the shift lengths) and then extract

critical intervals with the steps described above. Algorithm 3 describes the version with preponing

a single shift in detail. The version with postponing a shift is simply obtained from Algorithm 3 by

increasing the start and end of the shift by one period in line 6 of Algorithm 3. Looking at our example

in Figure 3, we get another optimal solution by starting shift s2 one period earlier. With this solution,
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Algorithm 2: Extraction of critical time intervals from over-coverage.

// First, extract a set of over-coverage intervals Ioc.
1 Start with r = 0.
2 while r < |P |+ 1 do

3 Increase r by 1 until finding a period pr with y+pr,d > 0 or r = |P |+ 1.

4 if r < |P |+ 1 then
5 Create an interval i and set STA(i) to pr.

6 Continue to increase r by 1 until finding a period pr with y+pr,d = 0 or r = |P |+ 1.

7 Set END(i) to pr−1

8 if length of i is at least γ then
9 Add interval i to set Ioc.

10 end
// Then, generate critical intervals from the over-coverage time intervals.

11 foreach i = [STA(i),END(i)] ∈ Ioc do
12 foreach selected shift s, i.e., with xs = 1, intersecting with interval i do
13 if shift s starts before interval i then
14 Add i′ = [STA(s), p′] to set Icritd , where p′ is the period preceding STA(i).
15 if shift s ends after interval i then
16 Add i′′ = [p′,END(s)] to set Icritd , where p′ is the period succeeding END(i).

17 end

18 end

19 Note: An interval is only added to set Icritd if it is not yet present in this set.

Algorithm 3: Generate alternative optimal solutions and derive critical intervals.

1 foreach department d ∈ D do
2 foreach selected shift s, i.e., with xs = 1, in department d do

// Variable altSol stores the generated alternative optimal solution.

3 altSol ← null
4 stopWhile ← false
5 while STA(s) 6= p1 and stopWhile = false do
6 decrease STA(s) and END(s) by one period;
7 if shift profile rules are fullfilled by s then
8 if solution of department d with updated s is optimal then
9 altSol ← solution with updated s.

10 else
11 stopWhile ← true
12 end

13 end
14 if altSol is not null then
15 Apply Algorithms 1 and 2 with solution altSol.

16 end

17 end

we generate a new critical interval [p9, p9] caused by an under-coverage. Note that we refrain from

listing all generated intervals in the example.

Finally, for any pair i and i′ of time intervals in Icritd , if i′ directly starts after the end of i, we

add the concatenated interval i∗ with STA(i∗) = STA(i) and END(i∗) = END(i′) to set Icritd . The

reasoning is that it could be beneficial to simultaneously consider the two critical time intervals. In

our example, department D1 has the critical intervals [p9, p9] and [p10, p10]. Hence, we also add the

concatenated interval [p9, p10].

4.1.3 Create transfer and external shifts

In the last step of this phase, we create the anonymous transfer and external shifts that are considered

in the next phase. For this purpose, we will characterize an external shift s by its start period

STA(s) ∈ P , its end period STA(s) ∈ P , the department D(s) ∈ D providing an employee to execute

shift s, and the department where s is executed. For any anonymous transfer shift, we further specify

a transfer period, after which the work place is changed and an indication whether the work block

before or after the transfer period is executed in the external department.
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For each department d ∈ D, we sequentially consider each of its critical intervals i in Icritd to generate

the following shifts. We create all feasible (with respect to the pre-defined shift profile constraints,

see Section 3.1) anonymous external shifts starting no more than δ time periods before STA(i) and

ending no more than δ time periods after END(i). We do not impose that the start and end times

of the created shifts coincide with interval i as it is then typically impossible to fulfill the shift profile

constraints. The parameter δ should be set with this in mind. Similarly, we create all feasible transfer

shifts whose first work block is in department d. In this case, we set the transfer period to END(i).

In the same manner, we create all feasible transfer shifts whose second work block is in department d.

In this case, we set the transfer period to the period preceding STA(i). The described external and

transfer shifts are generated for each department of origin d′ that has at least one employee qualified to

work in (the external) department d. Denote by Sex/trd the set of external and transfer shifts generated

for department d.

Consider the critical interval [p45, p48] of department D1 in our example and let δ be one period.

We create all external shifts of length between two and four periods starting at or after p44 and ending

at or before p49. Then, we generate the transfer shifts with a first work block in D1 starting either

at p46, p47, or p48 and ending at p48 and a second work block in D2 starting at p49 and ending either

at p49, p50, or p51. Clearly, the total shift length must be at most four periods as specified in the shift

profiles. Similarly, we create the transfer shifts with a first work block in D2 starting either at p42,

p43, or p44 and ending at p44 and a second work block in D1 starting at p45 and ending either at p45,

p46, or p47. Again, both work blocks together must contain at most four periods.

We finally remark that the number of generated external and transfer shifts can become very large,

particularly for instances where the demand in employees cannot be matched well only with internal

shifts, which often occurs when the demand highly fluctuates over time. This is a problem since each

generated shift will be a variable in one of the MILPs of the daily scheduling problems addressed in

the next phase (see Section 4.2). Hence, to keep these MILPs reasonably small, we set a restriction for

the total number of shifts (internal, external and transfer) starting at a same day. More specifically,

if the number of shifts in Sdepd ∪ Sex/trd starting at some day d is larger than β, we delete all transfer

and external shifts that were generated (fully or partially) due to demand over-coverage. Parameter β

should be chosen so as the MILPs of the next phase can be solved within reasonable computation time.

4.2 Second phase: Derive inter-department demands

In the second phase of MP-DH, we first solve a daily, anonymous employee scheduling problem to de-

termine how to best use the created anonymous external and transfer shifts to reduce the demand over-

and under-coverage obtained in the first phase, in which the departments were considered separately.

The outcomes are then used to specify inter-department demand curves for each pair of departments,

specifying for each period how many employees of the first department must be serving in the second

department.

More specifically, for each day Jr, r = {1, . . . , 7}, the optimization problem considered here is

constructed as follows. The set Sdayr of anonymous shifts is given by Sdayr = {s ∈
⋃

d∈D(Sdepd ∪
Sex/trd ) : DAY(STA(s)) = Jr}, which are all shifts starting at day Jr. Introduce a non-negative integer

variable xs for each shift s ∈ Sdayr indicating how many employees work shift s and two non-negative

variables y−pd and y+pd for each period p ∈ P with DAY(p) = Jr capturing the under- and over-coverage

of the demand. Then solve the following MILP for day Jr, r = {1, . . . , 7}:

Minimize
∑

s∈Sday
r

csxs +
∑
p∈P :

DAY(p)=Jr

∑
d∈D

(cund y−pd + covd y
+
pd) (4a)

subject to∑
s∈Sday

r :
p∈P (s,d)

xs − y+pd + y−pd = bpd for all p ∈ P with DAY(p) = Jr and d ∈ D, (4b)
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∑
s∈Sday

r :D(s)=d

xs ≤ |{e ∈ Ed : Jr ∈ J(e)}| for all d ∈ D, (4c)

xs ∈ Z≥0 for all s ∈ Sdayr , (4d)

y−pd, y+pd ≥ 0 for all p ∈ P and d ∈ D. (4e)

The objective (4a) captures the shift costs and the demand under- and over-coverage costs. Con-

straints (4b) link the variables y−pd and y+pd to the variables xs. For each department d, a constraint

in (4c) limits the total number of shifts covered by employees of d to the number of employees available

at day Jr in d. Finally, constraints (4d) and (4e) specify the domains of the decision variables.

Note that the partitioning into daily problems introduces some imprecision. Shifts may, for example,

start at one day and finish at the next. In the above model, such shifts are only attached to the day

at which they start. Hence, a potential coverage for periods of the next day are not captured by the

model. The partitioning is, however, needed to get manageable MILPs.

Figure 4 depicts the solutions obtained by model (4) for our example. We observe that the demands

of both departments are perfectly covered. Among the 29 selected shifts, there are five transfer and

one external shifts.

Given the solutions of model (4) for all days Jr, r = {1, . . . , 7}, let Ssel be the set of all selected

transfer and external shifts. We derive inter-department demands from set Ssel as follows. Each

department d ∈ D is assigned to cover a demand of

bpdd′ = |{s ∈ Ssel, D(s) = d and p ∈ P (s, d′)}| (5)

for any other department d′(6= d) in period p, i.e., it is required to transfer bpdd′ of its employees

to department d′ in period p. The right-hand side of Equation (5) counts how many shifts with

department of origin d are selected to cover some demand of department d′ in period p. Finally, the

intra-department demand bpdd, i.e., the demand of department d that must be covered by its internal

employees, is given by

bpdd = bpd −
∑

d′∈D\{d}

bpd′d, (6)

which is the total demand minus the demand transferred to the other departments via the inter-

department demands bpd′d, d
′ ∈ D \ {d}.

Consider the solution of our example given in Figure 4. A demand of one employee is transferred

from department D1 to D2 in the periods 9, 10, 28, 45 to 48, 58, 70, and 71, and vice versa, a demand

of one employee is transferred from D2 to D1 in the periods 18 and 19.

4.3 Third phase: Department-per-department optimization

In the third and final phase of MP-DH, we decompose the initial employee scheduling problem into

(personalized) mono-department scheduling problems where the possibility to transfer employees be-

tween departments is reflected by the inter-department demands derived in the previous phase.

Specifically, for each department d ∈ D, the following optimization problem is addressed. First,

generate all feasible (personalized) internal shifts that cover at least one period of the internal demand

bpdd. Then, create all feasible external and transfer shifts that cover at least one period of the external

demand bpdd′ in a different department d′. Let Spersd be the so-obtained set of shifts, and define

Spersde ⊆ Spersd to be the subset of shifts of employee e ∈ E. For each shift s ∈ Spersd , introduce a binary

variable xs taking value 1 if s is selected and 0, otherwise. To capture the over- and under-coverage

of the inter- and intra-department demands, introduce two non-negative variables y−pdd′ and y+pdd′ for

each period p ∈ P and department d′ ∈ D. Finally, solve the following MILP for department d ∈ D:
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Department D1

1

2

3
Demand

Period
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

day 1 day 2 day 3 day 4 day 5 day 6 day 7

Selected anonymous shifts
s1

s2

s3

s4

s5

s6

s7

s8

s9 s10 s11

s12

s13

s14

Department D2

1

2

3
Demand

Period
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

day 1 day 2 day 3 day 4 day 5 day 6 day 7

Selected anonymous shifts
s15

s16

s17 s18

s19

s20

s21

s22

s23

s24

s25

s26

s27

s28

s29

Figure 4: An optimal solution of model (4) for each day of our example. The external and transfer shifts are depicted in
the department providing the employees. The colors of the shifts indicate where the employee is working: dark gray for
department D1, light gray for D2.

Minimize
∑

s∈Spers
d

csxs +
∑
p∈P

∑
d′∈D

(cund y−pdd′ + covd y
+
pdd′) (7a)

subject to

∑
s∈Spers

d :

p∈P (s,d′)

xs − y+pdd′ + y−pdd′ = bpdd′ for all p ∈ P and d′ ∈ D, (7b)

∑
s∈Spers

de :
DAY(STA(s))=j

xs ≤ 1 for all e ∈ Ed and j ∈ J(e), (7c)

∑
s∈Spers

de

|P (s)|xs ≤ tmax
e for all e ∈ Ed, (7d)

∑
s∈Spers

de :
{pk,...,pk+rmin}∩P (s)6=∅

xs ≤ 1 for all e ∈ Ed and k ∈ {1, . . . , |P | − rmin}, (7e)

xs ∈ {0, 1} for all s ∈ Spersd , (7f)

y−pdd′ , y
+
pdd′ ≥ 0 for all p ∈ P and d′ ∈ D. (7g)
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Model (7) is structurally similar to (2) and we therefore only point to the differences. Con-

straints (7b) model the demand balance constraint not only for the internal demand of d but also

for the demand that must be fulfilled by employees of d for any other department d′. Further note

that constraints (7c) to (7e) must only be added for the employees belonging to department d.

Given a feasible solution of (7) for each department d ∈ D, a feasible solution of the entire prob-

lem (2) can easily be derived. Indeed, the shifts selected in models (7) are all feasible, hence they

also belong to set S. Let S be the union of the shifts selected in the provided solutions. Then, the

corresponding variables xs, s ∈ S, take value 1 in (2). For each period p ∈ P and department d ∈ D,

the value of the under- and over-coverage variables can be set according to their meaning so that (2b)

is fulfilled. As the provided solutions satisfy constraints (7c) to (7e), the corresponding constraints (2c)

to (2e) are fulfilled, too. As a result, the so-obtained schedule S of ESP-IDT is feasible. Note that

the cost of schedule S is at most the sum of the costs of the feasible solutions of (7). Indeed, it can

happen that some over-coverage and under-coverage of demands transferred to different departments

cancel out in the overall cost calculations.

In our example, we get the final solution depicted in Figure 5 by solving model (7) for both

departments. We observe that the demand is perfectly covered in both departments and the inter-

department transfer feature is used with one external and five transfer shifts. The total cost of this

schedule is 35.7. It is an optimal solution for this instance as proven by solving model (2). Note that

without the inter-department transfer feature, the optimal value is 247.1 with 22 employee-hours of

under-coverage and 2 employee-hours of over-coverage.

Department D1

1

2

3
Demand

Period
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

day 1 day 2 day 3 day 4 day 5 day 6 day 7
Employees

E1 s1

E2 s2

E3 s3

s4

s6

s5 s7

s8 s9

s10

s11

s12

s13

s14

Department D2

1

2

3
Demand

Period
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

day 1 day 2 day 3 day 4 day 5 day 6 day 7
Employees

E4

E5

E6

s15

s16

s17

s18

s19

s20

s21

s22

s23

s24

s25

s26

s27

s28

s29

Figure 5: The final solution of our example obtained by solving model (7) for both departments.

5 Computational experiments

Extensive numerical tests were executed to assess the validity of MP-DH. This section describes the

experimental setting and discusses the obtained results.
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5.1 Experimental setting

We use and slightly tailor the benchmark instances introduced in Dahmen et al. (2018) for our numerical

experiments. For completeness, we briefly describe the structure of the instances and refer to their

article for further details. In all instances, a time period consists of 15 minutes. The unit penalty cost

(per period and employee) for under- and over-coverage is 2.35 and 1.175, respectively, the unit work

time cost is 0.0375, and the unit transfer cost is 0.025. The minimum duration of a work block is four

time periods, the maximum work time per week and employee is 160 periods, i.e., 40 h, and we set the

minimum number of rest periods to 48 periods, which is slightly shorter than the 56 periods applied by

Dahmen et al. (2018). On average, an employee is qualified to work for about 38% of all departments.

The instances can be grouped according to their size. The small instances (group 1 of Dahmen

et al. (2018)) involve 20 employees and up to 5 departments. The shift profiles specify three pre-defined

time periods each day at which a shift can start (i.e., at 2 a.m., 10 a.m., and 6 p.m.) and restrict the

length of a shift to three alternatives (i.e., 7 h, 8 h, and 9 h). While the restrictive shift profiles do

not resemble actual practice in retail stores, these instances are useful for a comparison with proven

optimal solutions. The medium-sized instances (groups 2 and 3 of Dahmen et al. (2018)) contain

between 50 and 400 employees and 5 to 10 departments. We specify that the shift length must be

either 7 h, 7 h 30 min, 8 h, 8 h 30 min, or 9 h, and valid shift start times are all full hours between 12 a.m.

and 8 p.m. These definitions are slightly more restrictive than in Dahmen et al. (2018). The large

instances (groups 4 and 5 of Dahmen et al. (2018)) have up to 1000 employees and 25 departments,

and their shift profile constraints are the same as for the medium-sized instances.

For each combination of number of departments and number of employees, four instances are

created with the four demand profiles proposed by Dahmen et al. (2018). In profile 1, 2, 3, and 4, the

demand can only change approximately every eight, four, two, and one hour(s). Hence, the higher the

demand profile number is, the more variability occurs in the demand. Finally, the name of an instance

is given by Dx Ey Pz, where x is the number of departments, y the number of employees, and z the

number of the demand profile.

For each instance, we execute the following four runs. First, we send the (global) model (2) without

generating external and transfer shifts to the mathematical optimization software XPRESS and solve

this version, called global-noTrans for short, with XPRESS’ standard branch-and-cut method. This

test can be used to assess the value of the inter-department transfer feature. Second, as before, we

use model (2) and the solver XPRESS, but this time we generate all feasible (internal, transfer, and

external) shifts. This run potentially provides a proven optimal solution for the problem under study,

and shows how hard it is to directly attack larger instances with model (2). Third, we use MP-DH to

solve the instance. And fourth, we re-run MP-DH but replace the first phase by simply generating all

possible anonymous external and transfer shifts as input for the second phase. We call this version of

our method MP-DH-noP1. These tests make it possible to assess the importance and impact of the

first phase in MP-DH.

The parameters of MP-DH are set to the same values for all instances. Specifically, β is set to

15 000 000. The MILPs of the second phase are still manageable with this value. Parameter γ is set

to 4, which is a reasonable value looking at the given under- and over-coverage costs, and δ is set to 4,

which is adequate given the shift profiles.

All tests are executed on a computer with two Intel Xeon 3.50 GHz CPUs and 128 GB RAM. MP-

DH is implemented in Java and the branch-and-cut method of XPRESS 8.1.0 solves the mixed-integer

linear programs. As in Dahmen et al. (2018), we restrict the computation time to two hours for each

run. However, when determining the computation time, we exploit the parallelization possibility of MP-

DH and assume that the MILPs appearing in all three phases are solved simultaneously. Consequently,

the computation time of each phase is determined by the slowest task executed in parallel. Our

standpoint is that organizations typically have enough parallel computation power when solving large

employee scheduling problems so that what counts at the end is the wall-clock time for computing a
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schedule. The detailed results are given in Table 3 of the appendix, and the following sections provide

an in-depth discussion of them.

5.2 Computation times and MILP sizes in MP-DH

We first address the computation times of MP-DH. They are mainly determined by the time it takes to

solve the corresponding MILP models as the other operations are executed within a few milliseconds.

We therefore analyze the size of the MILP models (in terms of number of variables) and the computation

time needed to solve them. Figure 6 illustrates these numbers in box plots. The first phase of MP-DH

is not presented as the MILPs of this phase are solved to optimality within a second even for the

largest instances. This is not surprising as the number of variables is at most about 2000 even for the

largest instances, which is a low number for this type of MILP.

Second phase Third phase

Computation times

small medium large

25 s

50 s

75 s

100 s

Number of variables

small medium large

200k

400k

600k

800k

Computation times

small medium large

2000 s

4000 s

6000 s

Number of variables

small medium large

20k

40k

60k

80k

Figure 6: Box plots of the computation times and the number of variables of the MILPs solved during the second phase
(left) and the third phase (right) of MP-DH. Some box plots are cropped for readability purposes.

Considering the second phase, in which daily, anonymous employee scheduling problems are solved,

we observe that it is executed within a few seconds for all small and medium-sized instances. Even

the MILPs of the largest instances are solved within two minutes. This is interesting since the number

of variables can be quite large for those instances. Indeed, the largest MILP of this phase has about

1.5 million variables. We wish to emphasis that the computation times could be reduced further by

stopping the MILP search after some pre-defined time or by reducing the anonymous transfer and

external shifts generated in the first phase. When applied carefully, this should only marginally affect

the solution quality of MP-DH. For example, one may decide to delete some or all critical time periods

derived in the first phase from over-coverage periods if the MILP in the second phase is too large to

be solved in a reasonable amount of time. We therefore conclude that the second phase is reasonably

simple to solve or can easily be adjusted if the solution process takes too much time.

When looking at the third phase, in which personalized, mono-department scheduling problems

are solved, we first observe that the small instances are simple. Indeed, all instances are solved

within a second. In good part, this can be explained by the small number of variables, which is at

most about 3000. Larger instances, however, need a substantially larger effort to be solved. Indeed,

the computation times for medium-sized instances are typically about one hour, and large instances

usually take about 1.5 hours of computation time. For these instances, the number of variables is

mostly between 10 000 and 30 000. This number can, however, be substantially higher, particularly

when large amount of inter-department demands are determined in the second phase. Similarly as in

the second phase, the number of variables, and thus the computation time, can be reduced by carefully

restricting the set of personalized transfer and external shifts generated in the beginning of the third

phase. For example, for each interval with an external demand, one may only create the corresponding

personalized shifts for a small subset of the (qualified) employees.

Looking at all three phases of MP-DH together, we conclude that the computation times substan-

tially depend on the size of the instances. They are low for small instances, moderate for medium-sized

instances, and quite high for large instances. However, MP-DH can easily be customized and tailored
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so that solutions are found within reasonable computation times even for large instances. This is an

interesting feature of our approach, particularly with respect to an application in practice.

5.3 Value of the inter-department transfer feature

When excluding the possibility of inter-department transfers, all benchmark instances can be solved

to optimality within two hours of computation time, see columns 2 and 3 of Table 3. These results

support our view that including the inter-department transfer feature drastically increases the problem

complexity. However, the feature also makes it possible to reduce the overall costs substantially. This

can be seen in Figure 7, which shows a box plot of the absolute difference between the solution values

obtained with MP-DH and those of global-noTrans for the small, medium, and large instances.

−10 000 −8 000 −6 000 −4 000 −2 000 0 2 000

small

medium

large

Figure 7: Box plots of the absolute differences between the solution values of MP-DH (column 6 in Table 3, here res for
short) and those of model (2) without including external and transfer shifts (column 2 in Table 3, here bench for short).
The differences are computed by res− bench. Hence, MP-DH is better if this difference is negative.

We first observe that all values of MP-DH are lower than those of global-noTrans, although MP-

DH may not be able to find an optimal solution for some instances. Thus, the comparison does not

necessarily show the full potential of the transfer feature. Second, as the size of the instances increases,

the potential for cost reductions typically increases. But, clearly, not only the size determines the

value of the transfer feature. For example, it is obvious that there is not much improvement potential

available if one can cover the demand well with internal shifts only, and vice versa, the transfer feature

is certainly more valuable if the demands cannot be covered well by the own employees.

To analyze how the inter-department transfers are used, we record the number of internal, external,

and transfer shifts present in the solution provided by MP-DH. Figure 8 shows the obtained results in

box plots. We see that the majority are internal shifts and almost no external shifts are present in the

solutions. This can be explained in part by our approach, in which all internal shifts are available in

the MILP of the third phase, and by the cost structure. A non-negligible unit transfer cost is charged

for each period an employee is working in a non-home department. With these costs, a preference is

given to internal shifts while external shifts get quite expensive. The value of the inter-department

transfer feature mainly comes from a good use of the transfer shifts, which are used extensively. Indeed,

there are up to 20, 700, and 2000 transfer shifts present in the solutions of small, medium and large

instances, respectively.

Instance size

small

internal external transfer
0

25

50

75

100

medium

internal external transfer
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1 000

1 500

2 000

large

internal external transfer
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Figure 8: Box plots of the number of internal, external, and transfer shifts present in the solutions obtained by MP-DH.
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5.4 Comparison of MP-DH with proven optimal solutions

An assessment of the solution quality obtained with MP-DH by comparing it with the proven optimum

is only possible in the small instances, see columns 4 and 5 of Table 3. Indeed, most of the larger

instances are actually too big to be read into the MILP solver.

Table 1: Relative optimality gaps (in %) of MP-DH for the instances with 20 employees grouped by the number of
departments.

Instance gap Instance gap Instance gap

D2 E20 P1 s 3.9 D3 E20 P1 s 6.2 D5 E20 P1 s 10.3
D2 E20 P2 s 9.1 D3 E20 P2 s 10.1 D5 E20 P2 s 14.7
D2 E20 P3 s 6.2 D3 E20 P3 s 10.2 D5 E20 P3 s 11.8
D2 E20 P4 s 11.4 D3 E20 P4 s 10.4 D5 E20 P4 s 2.8
average 7.7 9.2 9.9

Table 1 displays the relative optimality gaps of MP-DH (in %, computed as (res− opt)/opt, where

res refers to the value obtained with MP-DH and opt to the optimal value) for the small instances.

It can be seen that the optimality gaps are quite large. Indeed, for the instances with 2, 3, and 5

departments, the average gap is 7.7%, 9.2%, and 9.9% respectively. Hence, for small instances, it is

certainly preferable to directly use model (2) with a state-of-the-art MILP solver. However, when

looking at the computation times, we see that it takes a good amount of time (up to 1317 s) for solving

these instances to optimality while MP-DH finishes within one second. Hence, if the computation time

is critical, one may still prefer to use MP-DH. Furthermore, one may try to increase the quality of the

solutions provided by MP-DH with an additional local search that takes the solution of MP-DH for

its start. We conducted some preliminary tests with this idea. Using the simple local search proposed

by Souissi (2016), we could decrease the optimality gaps of MP-DH from about 9% to 7%, on average,

within few seconds of computation time. In our view, the development of a high-quality local search

scheme for the problem under study is an interesting future research project.

We finally emphasis that problems in practice are typically much larger than the small instances of

our benchmark set. We introduce them only for the computational tests. Solving practical instances

directly with model (2) is rarely possible.

5.5 Importance of the first phase in MP-DH

To evaluate the impact of the first phase in MP-DH, we compare MP-DH with MP-DH-noP1, in which

the first phase is replaced by simply generating all anonymous external and transfer shifts. A remark

concerning the computation times is in order. First, we keep a time limit of two hours for solving

the MILPs of both remaining phases. We do not subtract the time needed to generate all shifts from

this limit. We, however, include these times in the results. Consequently, computation times can

be higher than two hours for MP-DH-noP1 in Table 3. For one instance, namely D10 E400 P3, no

feasible solution is found with MP-DH-noP1 in two hours. We therefore re-run this instance without

computation time limit and report the corresponding results in Table 3.

For the comparison of MP-DH with MP-DH-noP1, we compute the absolute difference of the

solution values obtained by the two methods and illustrate them in a box plot in Figure 9. The

following can be observed. Looking at the small instances, no substantial difference between MP-DH

and MP-DH-noP1 can be detected. The corresponding computation times, see Table 3, are similar, too.

When considering the medium-sized instances, we observe that there are larger differences between

the results of the two methods. No method is, however, consistently better than the other, and the

median value is almost 0. The computation times are also similar, except for instance D10 E400 P3

where MP-DH-noP1 needs about 26 hours to find a first feasible solution in the third phase. This

exception is somewhat interesting to analyze further. As in most instances, the computation times in

the third phase vary substantially among the departments. Indeed, for all departments except one,

the third phase is solved within seven minutes while for the exceptionally difficult department it takes
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Figure 9: Box plots of the absolute differences between the solution values of MP-DH (column 6 in Table 3, here res
for short) and those of MP-DH without the first phase (column 8 in Table 3, here bench for short). The differences are
computed by res− bench. Hence, MP-DH is better if the difference is negative.

26 hours to find a first feasible solution. This department is the largest with 91 employees, but it has

only two employees more than the second largest department. Also, the number of variables in the

MILPs of these two departments are similar (about 55 000 for the largest department and 52 000 for

the second largest). Hence, the difficulty cannot be fully explained by the number of employees nor

by the size of the MILPs. We further observed that the XPRESS solver consistently uses 26 h for the

largest department even with different random seed values. Hence, randomness seems to play a minor

role. We suspect that the solver’s main difficulties lie in the primal heuristics and in the branching

strategies.

For the large instances, MP-DH-noP1 is substantially better than MP-DH. Indeed, it gives lower

values in more than 75% of the instances, and in 50% of the instances, the costs are at least lower by

600 than in the solutions obtained by MP-DH. We therefore conclude that MP-DH-noP1 is a valid

version of MP-DH, and that the second phase of MP-DH could benefit from a larger set of anonymous

transfer and external shifts generated in the first phase.

However, there is also a substantial drawback as seen when comparing the computation times

of MP-DH and MP-DH-noP1 for the large instances. They are, on average, about 4800 and 7400

seconds with MP-DH and MP-DH-noP1, respectively. This increase is substantial, and as we see when

comparing our results with values from the literature in the next section, MP-DH-noP1 does not scale

so well with increasing instance size, showing that it is important to have the first phase in MP-DH

when tackling very large instances.

We finally emphasis that a valid option is to combine MP-DH-noP1 with MP-DH as follows. In

parallel, we compute the transfer and external shifts with MP-DH and MP-DH-noP1. If the total

number of shifts (internal, transfer, and external) of MP-DH-noP1 is below a given threshold –we
could use β for this purpose–, we continue with this set in the second phase, and, otherwise, we take

the set from MP-DH.

5.6 Comparison of MP-DH with literature results

To compare MP-DH with an approach from the literature, we slightly adjust MP-DH so that it exactly

addresses the same problem as Dahmen et al. (2018). More specifically, for each employee, we declare

that exactly one shift must be executed during a workday, we introduce a constraint restricting the

portion of the work time spent in external departments, and we specify department-dependent transfer

costs. Introducing these changes in MP-DH is quite straightforward and we therefore omit the details

here. Although MP-DH is not tailored to the optimization problem given in Dahmen et al. (2018),

this comparison helps to assess the quality of MP-DH and shows that our method is quite flexible with

respect to the specific problem setting.

We use the medium and large instances of Dahmen et al. (2018) for the numerical experiments.

We execute one run with MP-DH and MP-DH-noP1 using the same experimental environment as for

the other tests. Note that the smallest instances are excluded as they are of little practical relevance

and serve in Dahmen et al. (2018) mainly for a comparison with proven optimal values.
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The detailed results of our experiments are given in Table 4 of the Appendix. This table also lists

the results of the integrated heuristic (IH) and the time decomposition heuristic (TDH) from Dahmen

et al. (2018), with which we compare our results.

We first look at the results of MP-DH-noP1. We see that, for the medium-sized instances, they are

often better than the results of MP-DH. However, we also observe that MP-DH-noP1 cannot provide a

solution for the large instances. There is a simple reason. The number of transfer and external shifts is

simply too large to be handled in the MILP of the second phase. This is due to the quite unrestrictive

shift profile rules of Dahmen et al. (2018). The shift profiles are, for example, more restrictive in our

main test setting as mentioned in Section 5.1. We conclude that the first phase in MP-DH is absolutely

necessary for large instances with somewhat unrestrictive shift profiles.

We then look at the results of MP-DH. For comparison purpose, we compute the relative gaps

(in %) between the solution values of MP-DH and those of IH and TDH. The obtained values are

listed in Table 2, grouped by instance size and demand profile type. For example, the relative gaps for

the instance D5 70 P2 are given in the line named D5 E70 and columns P2.

Table 2: Relative gaps (in %) between the results of MP-DH and those of IH and TDH, given by 100(res−bench)/bench,
where res and bench refer to the values obtained with MP-DH and IH/TDH, respectively. No solution was given for
D20 800 P1 with TDH. We exclude this instance in the average value computations.

MP-DH versus IH MP-DH versus TDH

P1 P2 P3 P4 P1 P2 P3 P4

medium
D5 E50 64.2 39.6 56.4 7.5 49.4 31.4 46.5 3.0
D5 E70 87.6 44.4 46.7 26.3 81.5 39.9 39.1 19.0
D5 E200 78.5 52.9 25.6 28.7 78.3 45.7 20.8 24.9
D10 E200 70.3 26.2 21.4 19.4 63.4 21.9 18.3 17.0
D10 E300 41.0 40.2 20.6 16.9 38.8 56.1 24.8 15.6
D10 E400 119.0 22.7 -8.2 0.0 113.2 31.9 -8.7 0.9

average 76.8 37.7 27.1 16.5 70.8 37.8 23.5 13.4

large
D20 E400 24.8 5.9 -24.4 -8.7 21.1 4.6 -24.7 -8.5
D20 E600 22.6 23.2 -6.6 -18.0 26.3 36.7 -0.8 -9.6
D20 E800 25.8 -31.0 -38.0 -20.9 - -77.2 -29.8 -12.6
D20 E1000 -10.0 -36.5 -36.9 -27.7 2.8 -27.6 -31.0 -16.8
D25 E800 -64.0 1.5 -23.7 -17.8 -63.9 4.8 -21.5 -10.4
D25 E1000 -55.3 4.4 -72.8 -24.5 -54.5 8.3 -72.0 -19.5

average -9.4 -5.4 -33.7 -19.6 -13.7 -8.4 -30.0 -12.9

We observe that IH and TDH are generally better than MP-DH for medium-sized instances. Par-

ticularly in instances with low demand volatility, i.e., with demand profiles 1 and 2, the two methods

of Dahmen et al. are at an advantage. The performance difference is quite high. For example, MP-DH

provides solutions with 76.8% higher costs than IH averaged over the medium-sized instances with

demand profile 1. However, the performance difference between MP-DH and IH/TDH decreases as the

demand volatility and the instance size increase. With more than 300 employees and demand profiles

3 and 4, MP-DH matches or outperforms IH and TDH in all instances and is substantially better than

IH and TDH in most of these instances. For example, MP-DH decreases the costs by 30.0% on average

when compared with TDH for large instances with demand profile 3.

Based on Table 4, we determine that the computation times are 2599 s, 5763 s, and 4000 s for MP-

DH, IH, and TDH respectively, averaged over the medium-sized instances and 3651 s, 6900 s, 5360 s

averaged over the large instances. Also, MP-DH, IH, and TDH are the fastest among the three methods

in 37, 0, and 11 instances, respectively. Hence, we conclude that MP-DH has an edge over IH and

TDH when considering the computation time.
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These results are no surprise. The methods of Dahmen et al. (2018) reduce the computational

burden by aggregating consecutive periods of the planning horizon. By construction, this aggregation

works better if the demand is quite stable, which could be seen in our comparison. Second, their

methods do not decompose the overall problem by department unlike MP-DH, which applies this

in its first and third phase. Hence, when the number of departments and employees increase, MP-

DH can keep the computation times at reasonable levels by benefiting from the decomposition and

parallelization possibilities, while the approaches of Dahmen et al. (2018) start having difficulties with

the computational burden. For example, TDH could not produce a solution for instance D20 800 P1

within a computation time of two hours.

We conclude that MP-DH can successfully be applied in the setting of Dahmen et al. (2018), thus

proving its flexibility. Typically, retail stores have quite a large number of employees and a substantial

volatility in the demands. Hence, we are convinced that MP-DH is a valid alternative to the methods

IH and TDH in practically relevant instances.

6 Concluding remarks

MP-DH enables to find good solutions for large ESP-IDT instances within reasonable computation

times. The method scales well with the size of instances since it benefits in each of its three phases

from problem decompositions and simplifications. MP-DH proved to be valuable especially for large

instances with highly variable demands, which are settings occurring frequently in retail stores in

practice.

A specific feature of MP-DH is its adaptability. On the one hand, if MP-DH struggles with solving

its second phase, one can adjust the anonymous external and transfer shifts generated in the first phase

and select a manageable subset of those. For example, one may simply exclude all shifts generated due

to an over-coverage of the demand. On the other hand, if MP-DH solves the second phase rapidly, one

may increase the number of shifts considered in this phase. In the extreme case, one may simply omit

the first phase and generate all feasible external and transfer shifts as second phase input. The third

phase, which is the most critical with respect to the computation time, is also adaptive. One can,

for example, try to reduce the size of the MILPs of this phase and so the computational burden by

omitting a selected subset of external and transfer shifts. This should, however, be carefully applied

as it may deteriorate the quality of the solutions.

MP-DH is also flexible with respect to the addressed employee scheduling problem as shown by our

computational results with the problem setting of Dahmen et al. (2018). We think that, independent

of the specific restrictions and rules, MP-DH performs well for multi-department employee scheduling

problems in which internal shifts are favored over inter-department shifts.

In future work, one may try to study and improve some specific steps of MP-DH. First, MP-DH-

noP1 has an edge over MP-DH in some larger instances. This points to improvement potential in

the generation of the anonymous external and transfer shifts in the first phase of MP-DH. Second,

as said before, MP-DH is adaptive. Hence, one may study how to adapt it to the characteristics of

specific instances. Another interesting avenue of research consists of developing a local search method

for ESP-IDT. As discussed in the computational results, preliminary tests have shown that such an

approach can improve the solutions of MP-DH within seconds. However, further research is needed to

establish local search methods that are both effective and efficient for large ESP-IDT instances.

Appendix

The detailed computational results are presented in Tables 3 and 4. The former gives the results

obtained with our main experimental setting and is structured as follows. The instance names are given

in the first column. For each instance, the solution value and the total computation time is specified for

each of the four runs (global-noTrans, global, MP-DH, and MP-DH-noP1). The instances are grouped
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and sorted according to their size. Table 4 present the results obtained in the setting of Dahmen et al.

(2018) using a similar structure as in Table 3. It shows the solution values and computation times

of our runs with MP-DH and MP-DH-noP1 as well as the benchmark values of Dahmen et al. (2018)

obtained with their integrated heuristic (IH) and the time decomposition heuristic (TDH).

Table 3: Detailed results for our main experimental setting. Solution values rounded to one decimal place, computation
times given in seconds and rounded to the nearest integer. The best values among MP-DH and MP-DH-noP1 are
highlighted in boldface. Average solution values and computation times are given for the groups of small, medium and
large instances.

instance global-noTrans global MP-DH MP-DH-noP1
value time value time value time value time

small
D2 E20 P1 1613.8 0 1509.2 4 1568.5 0 1560.8 0
D2 E20 P2 2030.7 1 1652.6 146 1802.7 1 1829.7 1
D2 E20 P3 1434.5 0 1081.6 156 1148.6 1 1224.5 1
D2 E20 P4 1290.0 0 998.5 38 1112.5 0 1108.0 0
D3 E20 P1 1757.3 0 1609.7 48 1710.0 0 1611.7 0
D3 E20 P2 2137.0 1 1727.1 139 1901.8 0 1962.1 1
D3 E20 P3 1838.8 0 1373.5 85 1514.1 0 1451.2 0
D3 E20 P4 1765.7 0 1352.0 34 1492.4 0 1469.1 0
D5 E20 P1 1870.2 0 1547.1 24 1707.1 0 1612.5 1
D5 E20 P2 1933.7 0 1517.9 1317 1741.1 0 1809.5 1
D5 E20 P3 1737.3 0 1250.3 471 1398.0 0 1522.2 1
D5 E20 P4 1909.6 0 1698.4 191 1746.5 0 1792.2 1

average 1776.6 0 1443.1 221 1570.3 0 1579.5 1
medium
D5 E50 P1 1282.0 7 - - 972.9 3 1395.6 65
D5 E50 P2 2316.5 1 - - 1274.1 9 1389.3 46
D5 E50 P3 2094.0 1 - - 1228.1 17 1440.0 3391
D5 E50 P4 2075.3 2 - - 1220.7 11 1445.6 45
D5 E70 P1 1708.4 7 - - 1345.7 11 1608.7 90
D5 E70 P2 2938.5 7 - - 2040.8 3188 1998.1 79
D5 E70 P3 2790.7 6 - - 1698.2 23 1948.5 80
D5 E70 P4 2276.1 7 - - 1649.9 955 1547.8 473
D5 E200 P1 5002.7 3619 - - 3327.1 3582 4359.2 4650
D5 E200 P2 6350.0 41 - - 3682.5 3582 3969.1 4068
D5 E200 P3 6616.5 156 - - 3580.7 3618 4663.7 3916
D5 E200 P4 5991.6 126 - - 4276.4 2837 4197.2 3719
D10 E200 P1 5012.1 29 - - 2645.2 37 2345.6 148
D10 E200 P2 6539.1 3497 - - 3874.8 3558 3382.8 193
D10 E200 P3 7081.6 80 - - 4489.8 3546 4092.3 471
D10 E200 P4 6642.8 9 - - 4589.6 254 4113.2 228
D10 E300 P1 8250.3 3508 - - 5008.5 3550 4398.9 3078
D10 E300 P2 11314.2 3439 - - 4921.6 3671 3801.7 3775
D10 E300 P3 11412.1 11 - - 5334.7 3668 4591.7 1935
D10 E300 P4 11028.9 8 - - 5378.8 3532 5100.1 430
D10 E400 P1 11881.3 2895 - - 6546.9 3919 4625.0 3825
D10 E400 P2 10076.0 343 - - 4961.7 6897 5368.6 4130
D10 E400 P3 12517.2 221 - - 6553.8 6349 4791.5 95438
D10 E400 P4 12405.2 816 - - 5886.0 5926 6491.3 3599
average 6483.4 785 3603.7 2614 3461.1 5745
large
D20 E400 P1 5727.5 5766 - - 4359.4 60 4608.5 7037
D20 E400 P2 4135.7 5139 - - 4026.1 799 3593.8 8030
D20 E400 P3 7366.1 69 - - 5502.3 5837 5184.4 7101
D20 E400 P4 6968.0 5368 - - 5788.6 5160 4931.5 6114
D20 E600 P1 12719.7 4857 - - 7654.6 5372 7208.3 7615
D20 E600 P2 14988.5 170 - - 9514.1 4575 7519.7 3801
D20 E600 P3 16312.7 6409 - - 8304.7 5757 7627.5 7209
D20 E600 P4 15284.7 5120 - - 9888.4 736 7985.5 3235
D20 E800 P1 18023.5 1784 - - 10448.3 6358 9332.6 8014
D20 E800 P2 22349.7 1072 - - 9698.7 6727 8583.3 8640
D20 E800 P3 22707.1 5433 - - 10693.8 4834 10116.2 6165
D20 E800 P4 21105.7 5054 - - 11023.0 184 9740.1 3201
D20 E1000 P1 18299.2 5685 - - 10509.9 5906 11200.2 7815

Continued on next page
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instance global-noTrans global MP-DH MP-DH-noP1
value time value time value time value time

D20 E1000 P2 28380.6 1386 - - 11461.1 6851 10946.0 7750
D20 E1000 P3 26565.5 4325 - - 12505.0 6319 12819.9 6595
D20 E1000 P4 22859.5 5683 - - 12154.3 5023 12240.8 7559
D25 E800 P1 9728.2 3268 - - 8787.4 6054 9320.4 8664
D25 E800 P2 8110.7 424 - - 7930.6 5652 7351.0 8172
D25 E800 P3 15089.1 6930 - - 10644.9 6365 9470.1 8485
D25 E800 P4 13132.6 5704 - - 11367.8 5511 9674.8 9517
D25 E1000 P1 15718.3 6506 - - 12108.8 6470 12050.5 9174
D25 E1000 P2 10109.5 4287 - - 10055.8 6481 9107.7 9029
D25 E1000 P3 18291.0 6573 - - 13951.3 3957 10822.9 9225
D25 E1000 P4 16480.4 5996 - - 13148.0 3543 11344.0 9981
average 15435.5 4292 9646.9 4772 8865.8 7422

Table 4: Detailed results for the setting of Dahmen et al. (2018). Solution values rounded to one decimal place.
Computation times given in seconds and rounded to the nearest integer. The best values among MP-DH, MP-DH-noP1,
IH, and TDH are highlighted in boldface. Average solution values and computation times are given for the groups of
medium and large instances.

Instance MP-DH MP-DH-noP1 IH TDH
value time value time value time value time

medium
D5 E50 P1 951.2 74 924.4 173 579.3 3947 636.6 3627
D5 E50 P2 1345.3 46 1121.5 143 963.9 618 1023.7 612
D5 E50 P3 1453.3 90 1392.6 219 929.0 3689 992.0 3625
D5 E50 P4 1137.5 43 1231.2 159 1058.3 1246 1104.2 1217
D5 E70 P1 1235.4 96 1018.8 236 658.5 3851 680.6 3758
D5 E70 P2 1980.8 122 1617.8 307 1371.4 3649 1416.4 3628
D5 E70 P3 1821.0 152 1832.0 561 1241.6 3824 1309.2 3638
D5 E70 P4 1393.2 247 1295.7 401 1103.1 3891 1171.1 3657
D5 E200 P1 2851.5 6320 1999.0 4154 1597.7 7202 1599.0 4497
D5 E200 P2 3727.7 5761 2893.2 1459 2438.5 7202 2558.0 4055
D5 E200 P3 3603.0 4832 3154.0 1659 2868.1 7085 2982.1 4233
D5 E200 P4 4052.1 6615 3867.5 9443 3148.9 7169 3243.0 3948
D10 E200 P1 2307.9 421 1716.7 2199 1355.1 7204 1412.5 3929
D10 E200 P2 3575.5 1001 3377.8 2095 2834.0 7205 2934.3 4523
D10 E200 P3 4088.0 644 3935.9 2687 3368.0 7206 3455.0 3994
D10 E200 P4 4368.5 638 3940.2 2081 3659.5 7206 3732.7 3965
D10 E300 P1 4419.0 4043 4070.7 3139 3134.0 6747 3183.0 4448
D10 E300 P2 4312.1 4947 3583.2 3481 3074.8 7210 2762.0 5531
D10 E300 P3 5199.5 4338 5133.7 4687 4310.4 7211 4165.0 4962
D10 E300 P4 5517.6 888 5500.2 3497 4720.4 6110 4771.1 4174
D10 E400 P1 6047.0 5453 3618.4 4613 2761.0 7210 2836.4 4633
D10 E400 P2 4755.3 4903 4605.3 5615 3874.9 7211 3605.8 5633
D10 E400 P3 5494.1 6891 5204.2 9223 5987.5 7212 6016.8 5681
D10 E400 P4 5900.8 3808 5689.0 12199 5900.5 7212 5846.3 5278
average 4665.4 3165 4198.0 4626 3748.3 7079 3726.7 4729
large
D20 E400 P1 3174.2 1247 - - 2543.7 4948 2621.6 1670
D20 E400 P2 2963.3 1151 - - 2799.2 5369 2833.1 4167
D20 E400 P3 4667.3 1241 - - 6171.4 6100 6197.3 4592
D20 E400 P4 4946.0 871 - - 5417.2 5491 5404.7 4194
D20 E600 P1 5764.6 2346 - - 4701.0 7204 4563.4 6699
D20 E600 P2 9028.9 4288 - - 7326.9 7204 6602.9 5424
D20 E600 P3 9042.8 6279 - - 9685.2 7205 9118.0 6039
D20 E600 P4 8694.9 1522 - - 10608.6 7204 9622.4 5445
D20 E800 P1 9081.5 3258 - - 7220.1 7205 - -
D20 E800 P2 8153.6 4419 - - 11810.8 7205 35688.3 6830

Continued on next page
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Instance MP-DH MP-DH-noP1 IH TDH
value time value time value time value time

D20 E800 P3 10256.9 5820 - - 16551.0 7206 14613.7 5851
D20 E800 P4 10727.9 6006 - - 13557.5 7207 12279.5 5833
D20 E1000 P1 8346.4 4568 - - 9271.9 7206 8120.6 5712
D20 E1000 P2 9319.0 2783 - - 14670.1 7206 12880.4 6086
D20 E1000 P3 12557.3 4218 - - 19900.5 7206 18208.9 5751
D20 E1000 P4 12672.3 6420 - - 17533.7 7207 15231.7 6055
D25 E800 P1 6582.2 2447 - - 18300.5 6999 18243.0 4091
D25 E800 P2 5870.1 5607 - - 5785.4 7208 5603.2 5429
D25 E800 P3 9362.2 2096 - - 12270.5 7208 11926.4 6032
D25 E800 P4 9293.1 2038 - - 11308.5 7204 10374.4 5862
D25 E1000 P1 11015.3 4169 - - 24659.0 6999 24232.9 5660
D25 E1000 P2 7510.6 4598 - - 7193.4 7208 6935.5 4657
D25 E1000 P3 11048.4 6567 - - 40578.3 7208 39499.6 4727
D25 E1000 P4 11888.0 3659 - - 15738.0 7204 14758.6 6475

average 9622.1 4097 16434.2 7172 15501.3 5545
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